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Abstract 
By now it is widely accepted that learning a task from scratch, i.e., without 
any prior knowledge, is a daunting undertaking. Humans, however, rarely at­
tempt to learn from scratch. They extract initial biases as well as strategies 
how to approach a learning problem from instructions and/or demonstrations 
of other humans. For learning control, this paper investigates how learning 
from demonstration can be applied in the context of reinforcement learning. 
We consider priming the Q-function, the value function, the policy, and the 
model of the task dynamics as possible areas where demonstrations can speed 
up learning. In general nonlinear learning problems, only model-based rein­
forcement learning shows significant speed-up after a demonstration, while in 
the special case of linear quadratic regulator (LQR) problems, all methods 
profit from the demonstration. In an implementation of pole balancing on a 
complex anthropomorphic robot arm, we demonstrate that, when facing the 
complexities of real signal processing, model-based reinforcement learning 
offers the most robustness for LQR problems. Using the suggested methods, 
the robot learns pole balancing in just a single trial after a 30 second long 
demonstration of the human instructor. 

1. INTRODUCTION 
Inductive supervised learning methods have reached a high level of sophistication. Given 
a data set and some prior information about its nature, a host of algorithms exist that can 
extract structure from this data by minimizing an error criterion. In learning control, how­
ever, the learning task is often less well defined. Here, the goal is to learn a policy, i.e., the 
appropriate actions in response to a perceived state, in order to steer a dynamical system to 
accomplish a task. As the task is usually described in terms of optimizing an arbitrary per­
formance index, no direct training data exist which could be used to learn a controller in a 
supervised way. Even worse, the performance index may be defined over the long term 
behavior of the task, and a problem of temporal credit assignment arises in how to credit 
or blame actions in the past for the current performance. In such a setting, typical for rein­
forcement learning, learning a task from scratch can require a prohibitively time­
consuming amount of exploration of the state-action space in order to find a good policy. 

On the other hand, learning without prior knowledge seems to be an approach that is rarely 
taken in human and animal learning. Knowledge how to approach a new task can be trans­
ferred from previously learned tasks, and/or it can be extracted from the performance of a 
teacher. This opens the questions of how learning control can profit from these kinds of in­
formation in order to accomplish a new task more quickly. In this paper we will focus on 
learning from demonstration. 

Learning from demonstration, also known as "programming by demonstration", "imitation 
learning" , and "teaching by showing" received significant attention in automatic robot as­
sembly over the last 20 years. The goal was to replace the time-consuming manual pro-
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Figure 1 : a) pendulum swing up, 
b) cart pole balancing 
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gramming of a robot by an automatic programming proc­
ess, solely driven by showing the robot the assembly task 
by an expert. In concert with the main stream of Artificial 
Intelligence at the time, research was driven by symbolic 
approaches: the expert's demonstration was segmented 
into primitive assembly actions and spatial relationships 
between manipulator and environment, and subsequently 
submitted to symbolic reasoning processes (e.g., Lozano­
Perez, 1982; Dufay & Latombe, 1983; Segre & Dejong, 
1985). More recent approaches to programming by dem­
onstration started to include more inductive learning 
components (e.g., Ikeuchi, 1993; Dillmann, Kaiser, & 
Ude, 1995). In the context of human skill learning, 
teaching by showing was investigated by Kawato, Gan­
dolfo, Gomi, & Wada (1994) and Miyamoto et al. (1996) 
for a complex manipulation task to be learned by an an­
thropomorphic robot arm. An overview of several other 
projects can be found in Bakker & Kuniyoshi (1996). 

In this paper, the focus lies on reinforcement learning and 
how learning from demonstration can be beneficial in this 
context. We divide reinforcement learning into two cate­
gories: reinforcement learning for nonlinear tasks 
(Section 2) and for (approximately) linear tasks (Section 
3), and investigate how methods like Q-Iearning, value­
function learning, and model-based reinforcement learn­
ing can profit from data from a demonstration. In Section 
2.3, one example task, pole balancing, is placed in the 
context of using an actual, anthropomorphic robot to learn 
it, and we reconsider the applicability of learning from 
demonstration in this more complex situation. 

2. REINFORCEMENT LEARNING FROM DEMONSTRATION 
Two example tasks will be the basis of our investigation of learning from demonstration. 
The nonlinear task is the "pendulum swing-up with limited torque" (Atkeson, 1994; Doya, 
19%), as shown in Figure 1a. The goal is to balance the pendulum in an upright position 
starting from hanging downward. As the maximal torque available is restricted such that 
the pendulum cannot be supported against gravity in all states, a "pumping" trajectory is 
necessary, similar as in the mountain car example of Moore (1991), but more delicately in 
its timing since building up too much momentum during pumping will overshoot the up­
right position. The (approximately) linear example, Figure 1b, is the well-known cart-pole 
balancing problem (Widrow & Smith, 1964; Barto, Sutton, & Anderson, 1983). For both 
tasks, the learner is given information about the one-step reward r (Figure 1), and both 
tasks are formulated as continuous state and continuous action problems. The goal of each 
task is to find a policy which minimizes the infinite horizon discounted reward: 

co (S-I) 00 

v(x(t)) = J e --~ r(x(s), u(s))ds or V(x(t)) = L ri-1r(x(i), u(i)) 
(1) 

i=t 

where the left hand equation is the continuous time formulation, while the right hand 
equation is the corresponding discrete time version, and where x and u denote a n­
dimensional state vector and a m-dimensional command vector, respectively. For the 
Swing-Up, we assume that a teacher provided us with 5 successful trials starting from dif-
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ferent initial conditions. Each trial consists of a time series of data vectors (0, e, -r) sam­
pled at 60Hz. For the Cart-Pole, we have a 30 second demonstration of successful balanc­
ing, represented as a 60Hz time series of data vectors (x, X, 0, e, F). How can these demon­
strations be used to speed up reinforcement learning? 

2.1 THE NONLINEAR TASK: SWING-UP 
We applied reinforcement learning based on learning a value function (V-function) (Dyer 
& McReynolds, 1970) for the Swing-Up task, as the alternative method, Q-learning 
(Watkins, 1989), has yet received very limited research for continuous state-action spaces. 
The V-function assigns a scalar reward value V(x(t») to each state x such that the entire V­
function fulfills the consistency equation: 

V(x(t)) = arg min(r(x(t), u(t)) + r V(x(t + 1))) (2) 
u(t) 

For clarity, this equation is given for a discrete state-action system; the continuous formu­
lation can be found, e.g., in Doya (1996). The optimal policy, u =Jt(x), chooses the action 
u in state x such that (2) is fulfilled. Note that this computation involves an optimization 
step that includes knowledge of the subsequent state x(t+ 1). Hence, it requires a model of 
the dynamics of the controlled system, x(t+ 1)=f(x(t),u(t». From the viewpoint of learning 
from demonstration, V-function learning offers three candidates which can be primed from 
a demonstration: the value function V(x), the policy 1t(x), and the modelf(x,u). 

60 2.1.1 V-Learning 
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In order to assess the benefits of a demon­
stration for the Swing-Up, we imple­
mented V-learning as suggested in Doya's 
(1996) continuous TD (CTD) learning al­
gorithm. The V-function and the dynam­
ics model were incrementally learned by a 

10 ...,-" -- a)scratch - c) primed model nonlinear function approximator, Recep-

o 
- - b) primed actor - d) primed actor&model tive Field Weighted Regression (RFWR) 

10 100 (Schaal & Atkeson (1996»). Differing 
Trial from Doya's (1996) implementation, we 

Figure 2: Smoothed learning curves of the average used the optimal action suggested by CTD 
of 10 learning trials for the learning conditions a) to learn a model of the policy 1t (an 

to d) (see text). Good performance is characterized "actor" as in Barto et al. (1983», again re­
by T up >45s; below this value the system is usu- presented by RFWR. The following learn­

ally able to swing up properly but it does not know ing conditions were tested empirically: 

b) 
c) 
d) 

how to stop in the upright position. a) Scratch: Trial by trial learning of 

value function V, model f, and actor 1t from scratch. 
Primed Actor: Initial training of 1t from the demonstration, then trial by trial learning. 
Primed Model: Initial training of f from the demonstration, then trial by trial learning. 
Primed Actor&Model: Priming of 1t and f as in b) and c), then trial by trial learning. 

Figure 2 shows the results of learning the Swing-Up. Each trial lasted 60 seconds. The 
time Tup the pole spent in the interval ° E [-7r / 2, 7r /2] during each trial was taken as the 
performance measure (Doya, 1996). Comparing conditions a) and c), the results demon­
strate that learning the pole model from the demonstration did not speed up learning. This 
is not surprising since learning the V-function is significantly more complicated than 
learning the model, such that the learning process is dominated by V-function learning. 
Interestingly, priming the actor from the demonstration had a significant effect on the ini­
tial performance (condition a) vs. b»). The system knew right away how to pump up the 
pendUlum, but, in order to learn how to balance the pendulum in the upright position, it fi­
nally took the same amount of time as learning from scratch. This behavior is due to the 
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fact that, theoretically, the V-function can only be approximated correctly if the entire 
state-action space is explored densely. Only if the demonstration covered a large fraction 
of the entire state space one would expect that V-learning can profit from it. We also in­
vestigated using the demonstration to prime the V-function by itself or in combination 
with the other functions. The results were qualitatively the same as in shown in Figure 2: 
if the policy was included in the priming, the learning traces were like b) and d), otherwise 
like a) and c). Again, this is not totally surprising. Approximating a V-function is not just 
supervised learning as for ;t and f, it requires an iterative procedure to ensure the validity 
of (2) and amounts to a complicated nonstationary function approximation process. Given 
the limited amount of data from the demonstration, it is generally very unlikely to ap­
proximate a good value function. 

60 

50 -- ~ -- --
/' 

/ 
V 

40 

1--~30 

20 

I - a)scratch 
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2.1.2 Model-Based V-Learning 
If learning a model f is required, one can 
make more powerful use of it. According 
to the certainty equivalence principle, f 
can substitute the real world, and planning 
can be run in "mental simulations" instead 
of interaction with the real world. In rein­
forcement learning, this idea was origi­
nally pursued by Sutton's (1990) DYNA 

o 
10 

Trial 
100) algorithms for discrete state-action spaces. 

Figure 3: Smoothed learning curves of the average 
of 10 learning trials for the learning conditions a) 
and b) (see text) of the Swing-Up problem using 
"mental simulations". See Figure 2 for explana-

tions how to interpret the graph. 

Here we will explore in how far a con­
tinuous version of DYNA, DYNA-CTD, 
can help in learning from demonstration. 
The only difference compared to CTD in 
Section 2.1.1 is that after every real trial, 
DYNA-CTD performs five "mental trials" 
in which the model of the dynamics ac­

quired so far replaces the actual pole dynamics. Two learning conditions we be explored: 

a) Scratch: Trial by trial learning of V, model f, and policy ;t from scratch. 
b) Primed Model: Initial training of f from the demonstration, then trial by trial learning. 

Figure 3 demonstrates that in contrast to V-learning in the previous section, learning from 
demonstration can make a significant difference now: after the demonstration, it only 
takes about 2-3 trials to accomplish a good swing-up with stable balancing, indicated by 
T up >45s. Note that also learning from scratch is significantly faster than in Figure 2. 

2.2 THE LINEAR TASK: CART -POLE BALANCING 
One might argue that applying reinforcement learning from demonstration to the Swing­
Up task is premature, since reinforcement learning with nonlinear function approximators 
has yet to obtain appropriate scientific understanding. Thus, in this section we turn to an 
easier task: the cart-pole balancer. The task is approximately linear if the pole is started in 
a close to upright position, and the problem has been well studied in the dynamic pro­
gramming literature in the context of linear quadratic regulation (LQR) (Dyer & McRey­
nolds, 1970). 

2.2.1 Q-Learning 
In contrast to V-learning, Q-Iearning (Watkins, 1989; Singh & Sutton, 1996) learns a more 
complicated value function, Q(x,u), which depends both on the state and the command. 
The analogue of the consistency equation (2) for Q-Iearning is: 

Q(x(t), u(t») = r(x(t), u(t») + r arg min(Q(x(t + 1), u(t + 1»)) (3) 
u(I+1) 
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At every state x, picking the action u which minimizes Q is the optimal action under the 
reward function (l). As an advantage, evaluating the Q-function to find the optimal pol­
icy does not require a model the dynamical system f that is to be controlled; only the 
value of the one-step reward r is needed. For learning from demonstration, priming the Q­
function and/or the policy are the two candidates to speed up learning. 

For LQR problems, Bradtke (1993) suggested a Q-Iearning method that is ideally suited 
for learning from demonstration, based on extracting a policy. He observed that for LQR 
the Q-function is quadratic in the states and commands: 

Q(x,u) = [xT,uTl[HHIl H I2 ][XT,UTY, HIl =nxn, H22 =mxm, HI2 =H;I =nxm (4) 
21 H22 

0.045 

0.04 

0.035 
'0 

~ 0.03 

£ 0.025 
a. 
~ 0.02 

~ 0.Q15 
o 

0.01 

KdOmo = [·0.59. -1.81. -18.71. ·6.67) 

~nal = [·5.76, -11.37, -83.05, -21.92) 

and that the (linear) policy, represented as a 
gain matrix K, can be extracted from (4) as: 

uopt = -K x = -H;;H2Ix (5) 

Conversely, given a stabilizing initial policy 
K demo' the current Q-function can be approxi-
mated by a recursive least squares procedure, 
and it can be optimized by a policy iteration 

0.005 process with guaranteed convergence (Bradkte, 
o-tJcr~Dl"!NI(fj~~~~II!~ 1993). As a demonstration allows one to extract 

o 20 40 60 80 100 120 an initial policy K demo by linearly regressing 
Time[s) 

Figure 4: Typical learning curve of a noisy 
simulation of the cart-pole balancer using Q­
learning. The graph shows the value of the 

one-step reward over time for the first 
learning trial. The pole is never dropped. 

the observed command u against the corre­
sponding observed states x, one-shot learning 
of pole balancing is achievable. As shown in 
Figure 4, after about 120 seconds (12 policy it­
eration steps), the policy is basically indistin­
guishable from the optimal policy. A caveat of 

this Q-Iearning, however, is that it cannot not learn without a stabilizing initial policy. 

2.2.2 Model-based V -Learning 
Learning an LQR task by learning the V-function is one of the classic forms of dynamic 
programming (Dyer & McReynolds, 1970). Using a stabilizing initial policy K demo' the 

current V-function can be approximated by recursive least squares in analogy with 
Bradtke (1993). Similarly as for K demo' a (linear) model f demo of the cart-pole dynamics 

can be extracted from a demonstration by linear regression of the cart-pole state x(t) vs. 
the previous state and command vector (x(t-1), u(t-1», and the model can be refined with 
every new data point experienced during learning. The policy update becomes: 

K= y(R + yBTHBtBTHA, where Vex) = xTHx, idemo = [AB], A = n x n,B = n X m (6) 

Thus, a similar process as in Bradtke (1993) can be used to find the optimal policy K, and 
the system accomplishes one shot learning, qualitatively indistinguishable from Figure 4. 

Again, as pointed out in Section 2.1.2, one can make more efficient use of the learned 
model by performing mental simulations. Given the model f demo' the policy K can be cal-

culated by off-line policy iteration from an initial estimate ofH, e.g., taken to be the iden­
tity matrix (Dyer & McReynolds, 1970). Thus, no initial (stabilizing) policy is required, 
but rather an estimate of the task dynamics. Also this method achieves one shot learning. 

2.3 POLE BALANCING WITH AN ACTUAL ROBOT 
As a result of the previous section, it seems that there are no real performance differences 
between V-learning, Q-Iearning, and model-based V-learning for LQR problems. To ex­
plore the usefulness of these methods in a more realistic framework, we implemented 
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learning from demonstration of pole balancing on an anthropomorphic robot arm. The ro­
bot is equipped with a 60 Hz video-based stereo vision. The pole is marked by two color 
blobs which can be tracked in real-time. A 30 second long demonstration of pole balaoc­
ing was is provided by a human standing in front of the two robot cameras. 

There are a few crucial differences in comparison with the simulations. First, as the dem­
onstration is vision-based, only kinematic variables can be extracted from the demonstra­
tion. Second, visual signal processing has about 120ms time delay. Third, a command 
given to the robot is not executed with very high accuracy due to unknown nonlinearities 
of the robot. And lastly, humans use internal state for pole balancing, i.e., their policy is 
partially based on non-observable variables. These issues have the following impact: 

Kinematic Variables: In this implementation, the robot arm 
replaces the cart of the Cart-Pole problem. Since we have an 
estimate of the inverse dynamics and inverse kinematics of 
the arm, we can use the acceleration of the finger in Carte­
sian space as command input to the task. The arm is also 
much heavier than the pole which allows us to neglect the 
interaction forces the pole exerts on the arm. Thus, the pole 
balancing dynamics of Figure Ib can be reformulated as: 

, .. i 
uml cosO + Oml2 - mgl sin 0= 0, x = u (7) 

Figure 5: Sketch of SARCOS An variables in this equation can be extracted from a dem-
anthropomorphic robot arm onstration. We omit the 3D extension of these equations. 

Delayed Visual Information: There are two possibilities of dealing with delayed variables. 
Either the state of the system is augmented by delayed commands corresponding to 
7* 1/60s:::::120s delay time, x T = (x, x,O, (}, U t_1' ut- 2 ' ... , ut- 7 ) , or a state predictive controller 
is employed. The former method increases the complexity of a policy significantly, while 
the latter method requires a model f. 
Inaccuracies of Command Execution: Given an acceleration command u, the robot will 
execute something close to u, but not u exactly. Thus, learning a function which includes 
u, e.g., the dynamics model (7), can be dangerous since the mapping (x,i,O,(},u) ~ (x,ii) 
is contaminated by the nonlinear dynamics of the robot arm. Indeed, it turned out that we 
could not learn such a model reliably. This could be remedied by "observing" the com­
mand u, i.e., by extracting u = x from visual feedback. 

Internal State in Demonstrated Policy: Investigations with human subjects have shown 
that humans use internal state in pole balancing. Thus, a policy cannot be observed that 
easily anymore as claimed in Section 2.2: a regression analysis for extracting the policy of 
a teacher must find the a~propriate time-alignment of observed current state and com­
mand(s) in the past. This can become a numerically involved process as regressing a pol­
icy based on delayed commands is endangered by singUlar regression matrices. Conse­
quently, it easily happens that one extracts a nonstabilizing policy from the demonstration, 
which prevents the application of Q-Iearning and V-learning as described in Section 2.2. 

As a result of these considerations, the most trustworthy item to extract from a demonstra­
tion is the model of the pole dynamics. In our implementation it was used in two ways, for 
calculating the policy as in (6), and in state-predictive control with a Kalman filter to 
overcome the delays in visual information processing. The model was learned incremen­
tally in real-time by an implementation of RFWR (Schaal & Atkeson 1996). Figure 6 
shows the results of learning from scratch and learning from demonstration of the actual 
robot. Without a demonstration, it took about 10-20 trials before learning succeeded in re­
liable performance longer than one minute. With a 30 second long demonstration, learning 
was reliably accomplished in one single trial, using a large variety of physically different 
poles and using demonstrations from arbitrary people in the laboratory. 
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3. CONCLUSION 
We discussed learning from demonstration in the 
context of reinforcement learning, focusing on Q­
learning, value function learning, and model 
based reinforcement learning. Q-Iearning and 
value function learning can theoretically profit 
from a demonstration by extracting a policy, by 

- a)scratcn 
_ b) primed model using the demonstration data to prime the Q/value 

O-fl=:::::;:==;:::;:::;='~~lrO -L:::;::'.::!.;:.~~~I00 function, or, in the case of value function learn-

10 

/!Trial ing, by extracting a predictive model of the 
Figure 6: Smoothed average of 10 learn­

ing curves of the robot for pole balancing. 
The trials were aborted after successful 
balancing of 60 seconds. We also tested 
long term performance of the learning 

system by running pole balancing for over 
an hour-the pole was never dropped. 

world. Only in the special case of LQR problems, 
however, could we find a significant benefit of 
priming the learner from the demonstration. In 
contrast, model-based reinforcement learning was 
able to greatly profit from the demonstration by 
using the predictive model of the world for 
"mental simulations". In an implementation with 

an anthropomorphic robot arm, we illustrated that even in LQR problems, model-based 
reinforcement learning offers larger robustness towards the complexity in real learning 
systems than Q-Iearning and value function learning. Using a model-based strategy, our 
robot learned pole-balancing from a demonstration in a single trial with great reliability. 
The important message of this work is that not every learning approach is equally suited to 
allow knowledge transfer and/or the incorporation of biases. This issue may serve as a 
critical additional constraint to evaluate artificial and biological models of learning. 
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