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Abstract 

When combining a set of learned models to form an improved es­
timator, the issue of redundancy or multicollinearity in the set of 
models must be addressed. A progression of existing approaches 
and their limitations with respect to the redundancy is discussed. 
A new approach, PCR *, based on principal components regres­
sion is proposed to address these limitations. An evaluation of the 
new approach on a collection of domains reveals that: 1) PCR* 
was the most robust combination method as the redundancy of the 
learned models increased, 2) redundancy could be handled without 
eliminating any of the learned models, and 3) the principal compo­
nents of the learned models provided a continuum of "regularized" 
weights from which PCR * could choose. 

1 INTRODUCTION 

Combining a set of learned models l to improve classification and regres­
sion estimates has been an area of much research in machine learning 
and neural networks [Wolpert, 1992, Merz, 1995, Perrone and Cooper, 1992, 
Leblanc and Tibshirani, 1993, Breiman, 1992, Meir, 1995, 
Krogh and Vedelsby, 1995, Tresp, 1995, Chan and Stolfo, 1995]. The challenge of 
this problem is to decide which models to rely on for prediction and how much 
weight to give each. 

1 A learned model may be anything from a decision/regression tree to a neural network. 
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The goal of combining learned models is to obtain a more accurate prediction than 
can be obtained from any single source alone. One major issue in combining a set 
of learned models is redundancy. Redundancy refers to the amount of agreement or 
linear dependence between models when making a set of predictions. The more the 
set agrees, the more redundancy is present. In statistical terms, this is referred to 
as the multicollinearity problem. 

The focus of this paper is to explore and evaluate the properties of existing meth­
ods for combining regression estimates (Section 2), and to motivate the need for 
more advanced methods which deal with multicollinearity in the set of learned mod­
els (Section 3). In particular, a method based on principal components regression 
(PCR, [Draper and Smith, 1981]) is described, and is evaluated emperically demon­
strating the it is a robust and efficient method for finding a set of combining weights 
with low prediction error (Section 4). Finally, Section 5 draws some conclusions. 

2 MOTIVATION 

The problem of combining a set of learned models is defined using the terminology 
of [Perrone and Cooper, 1992]. Suppose two sets of data are given: a training set 
'DTrain = (xm, Ym) and a test set 'DTelt = (Xl, Yl). Now suppose 'DTrain is used to 
build a set of functions, :F = fi(X), each element of which approximates f(x). The 
goal is to find the best approximation of f(x) using :F. 

To date, most approaches to this problem limit the space of approximations of f( x) 
to linear combinations of the elements of :F, i.e., 

N 

j(x) = L Cidi(X) 
i=l 

where Cij is the coefficient or weight of fj(x). 

The focus of this paper is to evaluate and address the limitations of these ap­
proaches. To do so, a brief summary of these approaches is now provided progress­
ing from simpler to more complex methods pointing out their limitations along the 
way. 

The simplest method for combining the members of :F is by taking the unweighted 
average, (i .e., Cij = 1/ N). Perrone and Cooper refer to this as the Basic Ensemble 
Method (BEM), written as 

N 

fBEM = I/NLfi(x) 
i=l 

This equation can also be written in terms of the misfit function for each fi(X). 
These functions describe the deviations of the elements of :F from the true solution 
and are written as 

mi(X) = f(x) -Ji(x). 

Thus, 
N 

fBEM = f(x) -1/NL mi(x). 
i=l 

Perrone and Cooper show that as long as the mi (x) are mutually independent 
with zero mean, the error in estimating f(x) can be made arbitrarily small by 
increasing the population size of :F. Since these assumptions break down in practice, 
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they developed a more general approach which finds the "optimal,,2 weights while 
allowing the mi (x) 's to be correlated and have non-zero means. This Generalized 
Ensemble Method (GEM) is written as 

N N 

IGEM = LQ:di(X) = I(x) - LQ:imi(X) 
i=1 i=l 

where 

C is the symmetric sample covariance matrix for the misfit function and the goal is to 
minimize E7,; Q:iQ:jCii' Note that the misfit functions are calculated on the training 
data and I(x) is not required. The main disadvantage to this approach is that it 
involves taking the inverse of C which can be "unstable". That is, redundancy in 
the members of :F leads to linear dependence in the rows and columns of C which 
in turn leads to unreliable estimates of C- 1 • 

To circumvent this sensitivity redundancy, Perrone and Cooper propose a method 
for discarding member(s) of :F when the strength of its agreement with another 
member exceeds a certain threshold. Unfortunately, this approach only checks for 
linear dependence (or redundancy) between pairs of Ii (x) and two Ii (x) for i =1= j. 
In fact, Ii (x) could be a linear combination of several other members of :F and the 
instability problem would be manifest. Also, depending on how high the threshold is 
set, a member of :F could be discarded while still having some degree of uniqueness 
and utility. An ideal method for weighting the members of :F would neither discard 
any models nor suffer when there is redundancy in the model set. 

The next approach reviewed is linear regression (LR)3 which also finds the "optimal" 
weights for the Ii (x) with respect to the training data. In fact, G EM and LR are 
both considered "optimal" because they are closely related in that GEM is a form 
of linear regression with the added constraint that E~1 Q:i = 1. The weights for 
LR are found as follows4 , 

N 

hR = LQ:di(X) 
i=1 

where 

Like GEM, LR and LRC are subject to the multicollinearity problem because finding 
the Q:i's involves taking the inverse of a matrix. That is, if the I matrix is composed 
of li(x) which strongly agree with other members of :F, some linear dependence will 
be present. 

20ptimal here refers to weights which minimize mean square error for the training data. 
3 Actually, it is a form of linear regression without the intercept term. The more general 

form, denote by LRC, would be formulated the same way but with member, fo which 
always predicts 1. According to [Leblanc and Tibshirani, 1993] having the extra constant 
term will not be necessary (i.e., it will equal zero) because in practice, E[fi(x)] = E[f(x)]. 

4Note that the constraint, E;:'l ai = 1, for GEM is a form of regularization 
[Leblanc and Tibshirani, 1993]. The purpose of regularizing the weights is to provide an 
estimate which is less biased by the training sample. Thus, one would not expect GEM 
and LR to produce identical weights. 
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Given the limitations of these methods, the goal of this research was to find a method 
which finds weights for the learned models with low prediction error without discard­
ing any of the original models, and without being subject to the multicollinearity 
problem. 

3 METHODS FOR HANDLING MULTICOLLINEARITY 

In the abovementioned methods, multicollinearity leads to inflation of the vari­
ance of the estimated weights, Ck. Consequently, the weights obtained from fit­
ting the model to a particular sample may be far from their true values. To 
circumvent this problem, approaches have been developed which: 1) constrain 
the estimated regression coefficients so as to improve prediction performance (Le., 
ridge regression, RIDG E [Montgomery and Friedman 1993], and principal compo­
nents regression), 2) search for the coefficients via gradient descent procedures (i.e., 
Widrow-Hofflearning, GD and EG+- [Kivinen and Warmuth, 1994]), or build mod­
els which make decorrelated errors by adjusting the bias of the learning algorithm 
[Opitz and Shavlik, 1995] or the data which it sees [Meir, 1995]. The third approach 
ameliorates, but does not solve, the problem because redundancy is an inherent part 
of the task of combining estimators. 

The focus of this paper is on the first approach. Leblanc and Tibshirani 
[Leblanc and Tibshirani, 1993] have proposed several ways of constraining or regu­
larizing the weights to help produce estimators with lower prediction error: 

1. Shrink a towards (1/ K, 1/ K, ... ,1/ K)T where K is the number of learned 
models. 

2. 2:~1 Ckj = 1 

3. Ckj ~ O,i = 1,2 ... K 

Breiman [Breiman, 1992] provides an intuitive justification for these constraints by 
pointing out that the more strongly they are satisfied, the more interpolative the 
weighting scheme is. In the extreme case, a uniformly weighted set of learned models 
is likely to produce a prediction between the maximum and minimum predicted 
values of the learned models. Without these constraints, there is no guarantee that 
the resulting predictor will stay near that range and generalization may be poor. 
The next subsection describes a variant of principal components regression and 
explains how it provides a continuum of regularized weights for the original learned 
models. 

3.1 PRINCIPAL COMPONENTS REGRESSION 

When dealing with the above mentioned multicollinearity problem, principal com­
ponents regression [Draper and Smith, 1981] may be used to summarize and extract 
the "relevant" information from the learned models. The main idea of PCR is to 
map the original learned models to a set of (independent) principal components in 
which each component is a linear combination of the original learned models, and 
then to build a regression equation using the best subset of the principal components 
to predict lex). 
The advantage of this representation is that the components are sorted according to 
how much information (or variance) from the original learned models for which they 
account. Given this representation, the goal is to choose the number of principal 
components to include in the final regression by retaining the first k which meet a 
preselected stopping criteria. The basic approach is summarized as follows: 
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1. Do a principal components analysis (PCA) on the covariance matrix of the 
learned models' predictions on the training data (i.e., do a PCA on the 
covariance matrix of M, where Mi,j is the j-th model's reponse for the 
i-th training example) to produce a set of principal components, PC = 
{PC1, ... ,PCN }. 

2. Use a stopping criteria to decide on k, the number of principal components 
to use. 

3. Do a least squares regression on the selected components (i.e., include PCi 
for i:::; k). 

4. Derive the weights, fri, for the original learned models by expanding 

/peR* = i31PC1 + ... + i3"PC" 

according to 

PCi = ;i,O/O + ... + ;i,N /N, 

and simplifying for the coefficients of ". Note that ;i,j is the j-th coeffi­
cient of the i-th principal component. 

The second step is very important because choosing too few or too many principal 
components may result in underfitting or overfitting, respectively. Ten-fold cross­
validation is used to select k here. 

Examining the spectrum of (N) weight sets derived in step four reveals that PCR* 
provides a continuum of weight sets spanning from highly constrained (i.e., weights 
generated from PCR1 satisfy all three regularization constraints) to completely un­
constrained (i.e., PCRN is equivalent to unconstrained linear regression). To see 
that the weights, fr, derived from PCR1 are (nearly) uniform, recall that the first 
principal component accounts for where the learned models agree. Because the 
learned models are all fairly accurate they agree quite often so their first principal 
component weights, ;1,* will be similar. The "Y-weights are in turn multiplied by a 
constant when PCR1 is regressed upon. Thus, the resulting fri'S will be fairly uni­
form. The later principal components serve as refinements to those already included 
producing less constrained weight sets until finally PCRN is included resulting in 
an unconstrained estimator much like LR, LRC and GEM. 

4 EXPERIMENTAL RESULTS 

The set of learned models, :F, were generated using Backpropogation 
[Rumelhart, 1986]. For each dataset, a network topology was developed which gave 
good performance. The collection of networks built differed only in their initial 
weights5 . 

Three data sets were chosen: cpu and housing (from the UCI repository), and 
body/at (from the Statistics Library at Carnegie Mellon University). Due to space 
limitation, the data sets reported on were chosen because they were representative 
of the basic trends found in a larger collection of datasets. The combining meth­
ods evaluated consist of all the methods discussed in Sections 2 and 3, as well as 
PCRI and PCRN (to demonstrate PCR*'s most and least regularized weight sets, 

SThere was no extreme effort to produce networks with more decorrelated errors. 
Even with such networks, the issue of extreme multicollinearity would still exist because 
E[f;(x)] = E[fi(x)] for a.ll i and j. 
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Table 1· Results 
Data bodyfat II cpu housing 11 
N 10 50 10 50 10 50 

BEM 1.03 1.04 38.57 38.62 2.79 2.77 
GEM 1.02 0.86 46.59 227.54 2.72 2.57 
LR 1.02 3.09 44.9 238.0 2.72 6.44 
RIDGE 1.02 0.826 44.8 191.0 2.72 2.55 
GD 1.03 1.04 38.9 38.8 2.79 2.77 
EGPM 1.03 1.07 38.4 38.0 2.77 2.75 
PCRl 1.04 1.05 39.0 39.0 2.78 2.76 
PCRN 1.02 0.848 44.8 249.9 2.72 2.57 
PCR* 0.99 0.786 40.3 40.8 2.70 2.56 

respectively). The more computationally intense procedures based on stacking and 
bootstrapping proposed by [Leblanc and Tibshirani, 1993, Breiman, 1992] were not 
evaluated here because they required many more models (i.e., neural networks) to 
be generated for each of the elements of F. 

There were 20 trials run for each of the datasets . On each trial the data was 
randomly divided into 70% training data and 30% test data. These trials were rerun 
for varying sizes of F (i.e ., 10 and 50, respectively). As more models are included 
the linear dependence amongst them goes up showing how well the multicollinearity 
problem is handled6 . Table 1 shows the average residual errors for the each of the 
methods on the three data sets. Each row is a particular method and each column 
is the size of F for a given data set. Bold-faced entries indicate methods which were 
not significantly different from the method with the lowest error (via two-tailed 
paired t-tests with p :::; 0.05) . 

PCR* is the only approach which is among the leaders for all three data sets . For 
the body/at and housing data sets the weights produced by BEM, PCRI , GD, and 
EG+- tended to be too constrained, while the weights for LR tended to be too 
unconstrained for the larger collection of models . The less constrained weights of 
GEM, LR, RIDGE, and PCRN severely harmed performance in the cpu domain 
where uniform weighting performed better. 

The biggest demonstration of PCR*'s robustness is its ability to gravitate towards 
the more constrained weights produced by the earlier principal components when 
appropriate (i.e., in the cpu dataset). Similarly, it uses the less constrained principal 
components closer to PCRn when it is preferable as in the bodyfat and housing 
domains . 

5 CONCLUSION 

This investigation suggests that the principal components of a set of learned mod­
els can be useful when combining the models to form an improved estimator. It 
was demonstrated that the principal components provide a continuum of weight 
sets from highly regularized to unconstrained. An algorithm, PCR* , was devel­
oped which attempts to automatically select the subset of these components which 
provides the lowest prediction error. Experiments on a collection of domains demon­
strated PCR*'s ability to robustly handle redundancy in the set of learned models. 
Future work will be to improve upon PCR* and expand it to the classification task. 

6This is verified by observing the eigenvalues of the principal components and values 
in the covariance matrix of the models in :F 
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