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Abstract 

The techniques of Bayesian inference have been applied with great 
success to many problems in neural computing including evaluation 
of regression functions, determination of error bars on predictions, 
and the treatment of hyper-parameters. However, the problem of 
model comparison is a much more challenging one for which current 
techniques have significant limitations. In this paper we show how 
an extended form of Markov chain Monte Carlo, called chaining, 
is able to provide effective estimates of the relative probabilities of 
different models. We present results from the robot arm problem 
and compare them with the corresponding results obtained using 
the standard Gaussian approximation framework. 

1 Bayesian Model Comparison 

In a Bayesian treatment of statistical inference, our state of knowledge of the values 
of the parameters w in a model M is described in terms of a probability distribution 
function. Initially this is chosen to be some prior distribution p(wIM), which can 
be combined with a likelihood function p( Dlw, M) using Bayes' theorem to give a 
posterior distribution p(wID, M) in the form 

( ID M) = p(Dlw,M)p(wIM) 
p w , p(DIM) (1) 

where D is the data set. Predictions of the model are obtained by performing 
integrations weighted by the posterior distribution. 
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The comparison of different models Mi is based on their relative probabilities, which 
can be expressed, again using Bayes' theorem, in terms of prior probabilities P(Mi) 
to give 

P(MiI D ) 
p(MjID) 

p(DIMdp(Mi) 
p(DIMj )p(Mj) 

(2) 

and so requires that we be able to evaluate the model evidence p(DIMi), which 
corresponds to the denominator in (1). The relative probabilities of different models 
can be used to select the single most probable model, or to form a committee of 
models, weighed by their probabilities. 

It is convenient to write the numerator of (1) in the form exp{ -E(w)}, where E(w) 
is an error function. Normalization of the posterior distribution then requires that 

p(DIM) = J exp{ -E(w)} dw. (3) 

Generally, it is straightforward to evaluate E(w) for a given value of w, although 
it is extremely difficult to evaluate the corresponding model evidence using (3) 
since the posterior distribution is typically very small except in narrow regions 
of the high-dimensional parameter space, which are unknown a-priori. Standard 
numerical integration techniques are therefore inapplicable. 

One approach is based on a local Gaussian approximation around a mode of the 
posterior (MacKay, 1992). Unfortunately, this approximation is expected to be 
accurate only when the number of data points is large in relation to the number of 
parameters in the model. In fact it is for relatively complex models, or problems for 
which data is scarce, that Bayesian methods have the most to offer. Indeed, Neal 
(1996) has argued that, from a Bayesian perspective, there is no reason to limit 
the number of parameters in a model, other than for computational reasons. We 
therefore consider an approach to the evaluation of model evidence which overcomes 
the limitations of the Gaussian framework. For additional techniques and references 
to Bayesian model comparison, see Gilks et al. (1995) and Kass and Raftery (1995). 

2 Chaining 

Suppose we have a simple model Mo for which we can evaluate the evidence an­
alytically, and for which we can easily generate a sample wi (where I = 1, ... , L) 
from the corresponding distribution p(wID, Mo). Then the evidence for some other 
model M can be expressed in the form 

p(DIM) 
p(DIMo) 

J exp{-E(w) + Eo(w)}p(wID, Mo)dw 

1 L 

L :E exp{ -E(w1) + Eo(w1)}. 

1=1 

(4) 

Unfortunately, the Monte Carlo approximation in (4) will be poor if the two error 
functions are significantly different, since the exponent is dominated by regions 
where E is relatively small, for which there will be few samples unless Eo is also small 
in those regions. A simple Monte Carlo approach will therefore yield poor results. 
This problem is equivalent to the evaluation of free energies in statistical physics, 
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which is known to be a challenging problem, and where a number of approaches 
have been developed Neal (1993). 

Here we discuss one such approach to this problem based on a chain of J{ successive 
models Mi which interpolate between Mo and M, so that the required evidence 
can be written as 

p(DIMl) p(DIM2) p(DIM) 
p(DIM) = p(DIMo) p(DIMo) p(DIMt} ... p(DIMK)· (5) 

Each of the ratios in (5) can be evaluated using (4). The goal is to devise a chain 
of models such that each successive pair of models has probability distributions 
which are reasonably close, so that each of the ratios in (5) can be evaluated accu­
rately, while keeping the total number of links in the chain fairly small to limit the 
computational costs. 

We have chosen the technique of hybrid Monte Carlo (Duane et ai., 1987; Neal, 
1993) to sample from the various distributions, since this has been shown to be 
effective for sampling from the complex distributions arising with neural network 
models (Neal, 1996). This involves introducing Hamiltonian equations of motion in 
which the parameters ware augmented by a set of fictitious 'momentum' variables, 
which are then integrated using the leapfrog method. At the end of each trajectory 
the new parameter vector is accepted with a probability governed by the Metropolis 
criterion, and the momenta are replaced using Gibbs sampling. As a check on our 
software implementation of chaining, we have evaluated the evidence for a mixture 
of two non-isotropic Gaussian distributions, and obtained a result which was within 
10% of the analytical solution. 

3 Application to Neural Networks 

We now consider the application of the chaining method to regression problems 
involving neural network models. The network corresponds to a function y(x, w), 
and the data set consists of N pairs of input vectors Xn and corresponding targets 
tn where n = 1, ... , N. Assuming Gaussian noise on the target data, the likelihood 
function takes the form 

( f3)N/2 {f3 N } 
p(Dlw, M) = 211" exp -2" ~ Ily(xn ; w) - t n l1 2 (6) 

where f3 is a hyper-parameter representing the inverse of the noise variance. We 
consider networks with a single hidden layer of 'tanh' units, and linear output 
units. Following Neal (1996) we use a diagonal Gaussian prior in which the weights 
are divided into groups Wk, where k = 1, ... ,4 corresponding to input-to-hidden 
weights, hidden-unit biases, hidden-to-output weights, and output biases. Each 
group is governed by a separate 'precision' hyper-parameter ak, so that the prior 
takes the form 

p(wl{a,}) = L exp { -~ ~ a,wfw , } (7) 

where Zw is the normalization coefficient. The hyper-parameters {ad and f3 are 
themselves each governed by hyper-priors given by Gamma distributions of the form 

p( a) ex: a$ exp( -as /2w) (8) 
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in which the mean wand variance 2w2 / s are chosen to give very broad hyper-priors 
in reflection of our limited prior knowledge of the values of the hyper-parameters. 
We use the hybrid Monte Carlo algorithm to sample from the joint distribution of 
parameters and hyper-parameters. For the evaluation of evidence ratios, however, 
we consider only the parameter samples, and perform the integrals over hyper­
parameters analytically, using the fact that the gamma distribution is conjugate to 
the Gaussian. 

In order to apply chaining to this problem, we choose the prior as our reference dis­
tribution, and then define a set of intermediate distributions based on a parameter 
A which governs the effective contribution from the data term, so that 

E(A, w) = A</>(W) + Eo(w) (9) 

where </>(w) arises from the likelihood term (6) while Eo(w) corresponds to the 
prior (7). We select a set of 18 values of A which interpolate between the reference 
distribution (A = 0) and the desired model distribution (A = 1) . The evidence for 
the prior alone is easily evaluated analytically. 

4 Gaussian Approximation 

As a comparison against the method of chaining, we consider the framework of 
MacKay (1992) based on a local Gaussian approximation to the posterior distri­
bution. This approach makes use of the evidence approximation in which the inte­
gration over hyper-parameters is approximated by setting them to specific values 
which are themselves determined by maximizing their evidence functions. 

This leads to a hierarchical treatment as follows. At the lowest level, the maximum 
w of the posterior distribution over weights is found for fixed values of the hyper­
parameters by minimizing the error function . Periodically the hyper-parameters are 
re-estimated by evidence maximization, where the evidence is obtained analytically 
using the Gaussian approximation. This gives the following re-estimation formulae 

1 

f3 
(10) 

where 'Yk = Wk - Uk Trk(A -1), Wk is the total number of parameters in group 
k, A = \7\7 E(w), 'Y = Lk 'Yk. and Trk(-) denotes the trace over the kth group 
of parameters. The weights are updated in an inner loop by minimizing the er­
ror function using a conjugate gradient optimizer, while the hyper-parameters are 
periodically re-estimated using (10)1. 

Once training is complete, the model evidence is evaluated by making a Gaussian 
approximation around the converged values of the hyper-parameters, and integrat­
ing over this distribution analytically. This gives the model log evidence as 

Inp(DIM) = -E(w) - ~ In IAI + ~ L Wk lnuk + 
k 

N 1 1 
2Inf3+lnh!+2Inh+ 2 ~ln(2hk) + 2 In (2/(N -'Y». (11) 

1 Note that we are assuming that the hyper-priors (8) are sufficiently broad that they 
have no effect on the location of the evidence maximum and can therefore be neglected. 
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Here h is the number of hidden units, and the terms In h! + 2ln h take account of 
the many equivalent modes of the posterior distribution arising from sign-flip and 
hidden unit interchange symmetries in the network model. A derivation of these 
results can be found in Bishop (1995; pages 434-436). 

The result (11) corresponds to a single mode of the distribution. If we initialize 
the weight optimization algorithm with different random values we can find distinct 
solutions. In order to compute an overall evidence for the particular network model 
with a given number of hidden units, we make the assumption that we have found all 
of the distinct modes of the posterior distribution precisely once each, and then sum 
the evidences to arrive at the total model evidence. This neglects the possibility that 
some of the solutions found are related by symmetry transformations (and therefore 
already taken into account) or that we have missed important modes. While some 
attempt could be made to detect degenerate solutions, it will be difficult to do much 
better than the above within the framework of the Gaussian approximation. 

5 Results: Robot Arm Problem 

As an illustration of the evaluation of model evidence for a larger-scale problem 
we consider the modelling of the forward kinematics for a two-link robot arm in a 
two-dimensional space, as introduced by MacKay (1992). This problem was chosen 
as MacKay reports good results in using the Gaussian approximation framework to 
evaluate the evidences, and provides a good opportunity for comparison with the 
chaining approach. The task is to learn the mapping (Xl, X2) -+ (Yl, Y2) given by 

where the data set consists of 200 input-output pairs with outputs corrupted by 
zero mean Gaussian noise with standard deviation u = 0.05. We have used the 
original training data of MacKay, but generated our own test set of 1000 points 
using the same prescription. The evidence is evaluated using both chaining and the 
Gaussian approximation, for networks with various numbers of hidden units. 

In the chaining method, the particular form of the gamma priors for the precision 
variables are as follows: for the input-to-hidden weights and hidden-unit biases, 
w = 1, s = 0.2; for the hidden-to-output weights, w = h, s = 0.2; for the output 
biases, w = 0.2, s = 1. The noise level hyper-parameters were w = 400, s = 0.2. 
These settings follow closely those used by Neal (1996) for the same problem. The 
hidden-to-output precision scaling was chosen by Neal such that the limit of an 
infinite number of hidden units is well defined and corresponds to a Gaussian process 
prior. For each evidence ratio in the chain, the first 100 samples from the hybrid 
Monte Carlo run, obtained with a trajectory length of 50 leapfrog iterations, are 
omitted to give the algorithm a chance to reach the equilibrium distribution. The 
next 600 samples are obtained using a trajectory length of 300 and are used to 
evaluate the evidence ratio. 

In Figure 1 (a) we show the error values of the sampling stage for 24 hidden units, 
where we see that the errors are largely uncorrelated, as required for effective Monte 
Carlo sampling. In Figure 1 (b), we plot the values of In{p(DIMi)/p(DIMi_l)} 
against .Ai i = 1..18. Note that there is a large change in the evidence ratios at the 
beginning of the chain, where we sample close to the reference distribution. For this 
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Figure 1: (a) error E(>. = 0.6,w) for h = 24, plotted for 600 successive Monte Carlo 
samples. (b) Values of the ratio In{p(DIM.)jp(DIM.-d} for i = 1, ... ,18 for h = 24. 

reason, we choose the Ai to be dense close to A = O. We are currently researching 
more principled approaches to the partitioning selection. Figure 2 (a) shows the 
log model evidence against the number of hidden units. Note that the chaining 
approach is computationally expensive: for h=24, a complete chain takes 48 hours 
in a Matlab implementation running on a Silicon Graphics Challenge L. 

We see that there is no decline in the evidence as the number of hidden units 
grows. Correspondingly, in Figure 2 (b), we see that the test error performance 
does not degrade as the number of hidden units increases. This indicates that there 
is no over-fitting with increasing model complexity, in accordance with Bayesian 
expectations. 

The corresponding results from the Gaussian approximation approach are shown in 
Figure 3. We see that there is a characteristic 'Occam hill' whereby the evidence 
shows a peak at around h = 12, with a strong decrease for smaller values of h 
and a slower decrease for larger values. The corresponding test set errors similarly 
show a minimum at around h = 12, indicating that the Gaussian approximation is 
becoming increasingly inaccurate for more complex models. 

6 Discussion 

We have seen that the use of chaining allows the effective evaluation of model 
evidences for neural networks using Monte Carlo techniques. In particular, we find 
that there is no peak in the model evidence, or the corresponding test set error, 
as the number of hidden units is increased, and so there is no indication of over­
fitting. This is in accord with the expectation that model complexity should not be 
limited by the size of the data set, and is in marked contrast to the conventional 

70.-----~----~------~----~ 1.4r-----~-----,-------~----~ 

50 

(a) 
60 

40 

1.3~ 
1.2' ~ 
1.1 1!r------&----~ 

(b) 

30L-----1~0------1~5------~20~--~ h 
10 15 20 h 

Figure 2: (a) Plot of Inp(DIM) for different numbers of hidden units. (b) Test error 
against the number of hidden units. Here the theoretical minimum value is 1.0. For 
h = 64 the test error is 1.11 
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Figure 3: (a) Plot of the model evidence for the robot arm problem versus the number 
of hidden units, using the Gaussian approximation framework. This clearly shows the 
characteristic 'Occam hill' shape. Note that the evidence is computed up to an additive 
constant, and so the origin of the vertical axis has no significance. (b) Corresponding plot 
of the test set error versus the number of hidden units. Individual points correspond to 
particular modes of the posterior weight distribution, while the line shows the mean test 
set error for each value of h. 

maximum likelihood viewpoint. It is also consistent with the result that, in the 
limit of an infinite number of hidden units, the prior over network weights leads to 
a well-defined Gaussian prior over functions (Williams, 1997). 

An important advantage of being able to make accurate evaluations of the model 
evidence is the ability to compare quite distinct kinds of model, for example radial 
basis function networks and multi-layer perceptIOns. This can be done either by 
chaining both models back to a common reference model, or by evaluating normal­
ized model evidences explicitly. 
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