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Abstract 

Humans use visual as well as auditory speech signals to recognize 
spoken words. A variety of systems have been investigated for per­
forming this task. The main purpose of this research was to sys­
tematically compare the performance of a range of dynamic visual 
features on a speechreading task. We have found that normal­
ization of images to eliminate variation due to translation, scale, 
and planar rotation yielded substantial improvements in general­
ization performance regardless of the visual representation used. In 
addition, the dynamic information in the difference between suc­
cessive frames yielded better performance than optical-flow based 
approaches, and compression by local low-pass filtering worked sur­
prisingly better than global principal components analysis (PCA). 
These results are examined and possible explanations are explored. 

1 INTRODUCTION 

Visual speech recognition is a challenging task in sensory integration. Psychophys­
ical work by McGurk and MacDonald [5] first showed the powerful influence of 
visual information on speech perception that has led to increased interest in this 
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area. A wide variety of techniques have been used to model speech-reading. Yuhas, 
Goldstein, Sejnowski, and Jenkins [8] used feedforward networks to combine gray 
scale images with acoustic representations of vowels. Wolff, Prasad, Stork, and Hen­
necke [7] explicitly computed information about the position of the lips, the shape of 
the mouth, and motion. This approach has the advantage of dramatically reducing 
the dimensionality of the input, but critical information may be lost. The visual 
information (mouth shape, position, and motion) was the input to a time-delay neu­
ral network (TDNN) that was trained to distinguish among consonant-vowel pairs. 
A separate TDNN was trained on the acoustic signal. The output probabilities for 
the visual and acoustic signals were then combined mUltiplicatively_ Bregler and 
Konig [1] also utilized a TDNN architecture. In this work, the visual information 
was captured by the first 10 principal components of a contour model fit to the lips. 
This was enough to specify the full range of lip shapes ("eigenlips"). Bregler and 
Konig [1] combined the acoustic and visual information in the input representation, 
which gave improved performance in noisy environments, compared with acoustic 
information alone. 

Surprisingly, the visual signal alone carries a substantial amount of information 
about spoken words. Garcia, Goldschen, and Petajan [2] used a variety of visual 
features from the mouth region of a speaker's face to recognize test sentences using 
hidden Markov models (HMMs). Those features that were found to give the best 
discrimination tended to be dynamic in nature, rather than static. Mase and Pent­
land [4] also explored the dynamic information present in lip images through the 
use of optical flow. They found that a template matching approach on the optical 
flow of 4 windows around the edges of the mouth yielded results similar to humans 
on a digit recognition task. Movellan [6] investigated the recognition of spoken dig­
its using only visual information. The input representation for the hidden Markov 
model consisted of low-pass filtered pixel intensity information at each time step, as 
well as a delta image that showed the pixel by pixel difference between subsequent 
time steps. 

The motivation for the current work was succinctly stated by Bregler and Konig [1]: 
"The real information in lipreading lies in the temporal change of lip positions, 
rather than the absolute lip shape." Although different kinds of dynamic visual 
information have been explored, there has been no careful comparison of different 
methods. Here we present results for four different dynamic techniques that are 
based on general purpose processing at the pixel level. The first approach was to 
combine low-pass filtered gray scale pixel values with a delta image, defined as the 
difference between two successive gray level images. A peA reduction of this gray­
scale and delta information was investigated next. The final two approaches were 
motivated by the kinds of visual processing that are believed to occur in higher 
levels of the visual cortex. We first explored optical flow, which provides us with 
a representation analogous to that in primate visual area MT. Optical flow output 
was then combined with low-pass filtered gray-scale pixel values. Each of these four 
representations was tested on two different datasets: (1) the raw video images, and 
(2) the normalized video images. 
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Figure 1: Image processing techniques. Left column: Two successive video frames 
(frames 1 and 2) from a subject saying the digit "one". These images have been 
made symmetric by averaging left and right pixels relative to the vertical midline. 
Middle column: The top panel shows gray scale pixel intensity information of frame 
2 after low-pass filtering and down-sampling to a resolution of 15 x 20 pixels. The 
bottom panel shows the delta image (pixel-wise subtraction of frame 1 from frame 
2), after low-pass filtering and downsampling. Right column: The top panel shows 
the optical flow for the 2 video frames in the left column. The bottom panel shows 
the reconstructed optical flow representation learned by a 1-state HMM. This can 
be considered the canonical or prototypical representation for the digit "one" across 
our database of 12 individuals. 

2 METHODS AND MODELS 

2.1 TRAINING SAMPLE 

The training sample was the Thlips1 database (Movellan [6]): 96 digitized movies 
of 12 undergraduate students (9 males, 3 females) from the Cognitive Science De­
partment at U C-San Diego. Video capturing was performed in a windowless room 
at the Center for Research in Language at UC-San Diego. Subjects were asked to 
talk into a video camera and to say the first four digits in English twice. Subjects 
could monitor the digitized images in a small display conveniently located in front 
of them. They were asked to position themselves so that their lips were roughly 
centered in the feed-back display. Gray scale video images were digitized at 30 
frames per second, 100 x 75 pixels, 8 bits per pixel. The video tracks were hand 
segmented by selecting a few relevant frames before the beginning and after the 
end of activity in the acoustic track. There were an average of 9.7 frames for each 
movie. Two sample frames are shown in the left column of Figure 1. 

2.2 IMAGE PROCESSING 

We compared the performance of four different visual representations for the digit 
recognition task: low-pass + delta, PCA of (gray-scale + delta), flow, and low-pass 


