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Abstract 

We propose a novel approach to automatically growing and pruning 
Hierarchical Mixtures of Experts . The constructive algorithm pro­
posed here enables large hierarchies consisting of several hundred 
experts to be trained effectively. We show that HME's trained by 
our automatic growing procedure yield better generalization per­
formance than traditional static and balanced hierarchies. Eval­
uation of the algorithm is performed (1) on vowel classification 
and (2) within a hybrid version of the JANUS r9] speech recog­
nition system using a subset of the Switchboard large-vocabulary 
speaker-independent continuous speech recognition database . 

INTRODUCTION 

The Hierarchical Mixtures of Experts (HME) architecture [2,3,4] has proven use­
ful for classification and regression tasks in small to medium sized applications 
with convergence times several orders of magnitude lower than comparable neu­
ral networks such as the multi-layer perceptron. The HME is best understood as a 
probabilistic decision tree, making use of soft splits of the input feature space at the 
internal nodes, to divide a given task into smaller, overlapping tasks that are solved 
by expert networks at the terminals of the tree. Training of the hierarchy is based 
on a generative model using the Expectation Maximisation (EM) [1,3] algorithm as 
a powerful and efficient tool for estimating the network parameters. 

In [3], the architecture of the HME is considered pre-determined and remains fixed 
during training. This requires choice of structural parameters such as tree depth 
and branching factor in advance. As with other classification and regression tech­
niques, it may be advantageous to have some sort of data-driven model-selection 
mechanism to (1) overcome false initialisations (2) speed-up training time and (3) 
adapt model size to task complexity for optimal generalization performance. In 
[11], a constructive algorithm for the HME is presented and evaluated on two small 
classification tasks: the two spirals and the 8-bit parity problems. However, this 



460 1. Fritsch, M. Finke and A. Waibel 

algorithm requires the evaluation of the increase in the overall log-likelihood for all 
potential splits (all terminal nodes) in an existing tree for each generation. This 
method is computationally too expensive when applied to the large HME's neces­
sary in tasks with several million training vectors, as in speech recognition, where 
we can not afford to train all potential splits to eventually determine the single best 
split and discard all others. We have developed an alternative approach to growing 
HME trees which allows the fast training of even large HME's, when combined with 
a path pruning technique. Our algorithm monitors the performance of the hierar­
chy in terms of scaled log-likelihoods, assigning penalties to the expert networks, 
to determine the expert that performs worst in its local partition. This expert will 
then be expanded into a new subtree consisting of a new gating network and several 
new expert networks. 

HIERARCHICAL MIXTURES OF EXPERTS 

We restrict the presentation of the HME to the case of classification, although it was 
originally introduced in the context of regression. The architecture is a tree with 
gating networks at the non-terminal nodes and expert networks at the leaves. The 
gating networks receive the input vectors and divide the input space into a nested 
set of regions, that correspond to the leaves of the tree. The expert networks also 
receive the input vectors and produce estimates of the a-posteriori class probabilities 
which are then blended by the gating network outputs. All networks in the tree 
are linear, with a softmax non-linearity as their activation function. Such networks 
are known in statistics as multinomiallogit models, a special case of Generalized 
Linear Models (GLIM) [5] in which the probabilistic component is the multinomial 
density. This allows for a probabilistic interpretation of the hierarchy in terms of 
a generative likelihood-based model. For each input vector x, the outputs of the 
gating networks are interpreted as the input-dependent multinomial probabilities 
for the decisions about which child nodes are responsible for the generation of the 
actual target vector y. After a sequence of these decisions, a particular expert 
network is chosen as the current classifier and computes multinomial probabilities 
for the output classes. The overall output of the hierarchy is 

N N 

P(ylx,0) = L9i(X, Vi) L9jli(X, Vij)P(ylx, Oij) 
i=1 j=1 

where the 9i and 9jli are the outputs of the gating networks. 

The HME is trained using the EM algorithm [1] (see [3] for the application of EM 
to the HME architecture) . The E-step requires the computation of posterior node 
probabilities as expected values for the unknown decision indicators: 

hi = 9i I:j 9jli Pij(y) 

I:i 9i I:j 9jli Pij(y) 

The M-step then leads to the following independent maximum-likelihood equations 

"""" (t) "" (t) (t) Vij = arg ~ax L.,.. L.,.. hk L.,.. hqk log911k 
'J t k I 
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where the (Jij are the parameters of the expert networks and the Vi and Vij are 
the parameters of the gating networks. In the case of a multinomiallogit model , 
Pij{y) = Yc , where Yc is the output of the node associated with the correct class . The 
above maximum likelihood equations might be solved by gradient ascent, weighted 
least squares or Newton methods. In our implementation, we use a variant of Jordan 
& Jacobs' [3] least squares approach. 

GROWING MIXTURES 

In order to grow an HME, we have to define an evaluation criterion to score the 
experts performance on the training data. This in turn will allow us to select 
and split the worst expert into a new subtree, providing additional parameters 
which can help to overcome the errors made by this expert . Viewing the HME 
as a probabilistic model of the observed data, we partition the input dependent 
likelihood using expert selection probabilities provided by the gating networks 

1(0; X) LlogP(y(t)lx(t) , 0) = LLgk log P (y (t)lx(t) , 0) 
k 

LL log[P(y(t)lx(t) , 0)]gk = Llk(0;X) 
k k 

where the gk are the products of the gating probabilities along the path from the 
root node to the k-th expert. gk is the probability that expert k is responsible 
for generating the observed data (note, that the gk sum up to one) . The expert­
dependent scaled likelihoods Ik (0; X) can be used as a measure for the performance 
of an expert within its region of responsibility. We use this measure as the basis of 
our tree growing algorithm: 

1. Initialize and train a simple HME consisting of only one gate and several experts. 

2. Compute the expert-dependent scaled likelihoods lk(9j X) for each expert in one 
additional pass through the training data. 

3. Find the expert k with minimum lk and expand the tree , replacing the expert by 
a new gate with random weights and new experts that copy the weights from the 
old expert with additional small random perturbations. 

4. Train the architecture to a local minimum of the classification error using a cross­
validation set. 

5. Continue with step (2) until desired tree size is reached. 

The number of tree growing phases may either be pre-determined, or based on 
difference in the likelihoods before and after splitting a node. In contrast to the 
growing algorithm in [11], our algorithm does not hypothesize all possible node 
splits, but determines the expansion node(s) directly, which is much faster , espe­
cially when dealing with large hierarchies. Furthermore, we implemented a path 
pruning technique similar to the one proposed in [11], which speeds up training 
and testing times significantly. During the recursive depth-first traversal of the tree 
(needed for forward evaluation, posterior probability computation and accumula­
tion of node statistics) a path is pruned temporarily if the current node's probability 
of activation falls below a certain threshold . Additionally, we also prune subtrees 
permanently, if the sum of a node's activation probabilities over the whole training 
set falls below a certain threshold . This technique is consistent with the growing 
algorithm and also helps preventing instabilities and singularities in the parameter 
updates, since nodes that accumulate too little training information will not be 
considered for a parameter update because such nodes are automatically pruned by 
the algorithm. 
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Figure 1: Histogram trees for a standard and a grown HME 

VOWEL CLASSIFICATION 

In initial experiments, we investigated the usefulness of the proposed tree growing 
algorithm on Peterson and Barney's [6] vowel classification data that uses formant 
frequencies as features. We chose this data set since it is small, non-artificial and 
low-dimensional, which allows for visualization and understanding of the way the 
growing HME tree performs classification tasks. 

x 

x 
~ 0 

o 0 

The vowel data set contains 
1520 samples consisting of the 
formants FO, F1, F2 and F3 
and a class label, indicating 
one of 10 different vowels. 
Experiments were carried out 
on the 4-dimensional feature 
space, however, in this paper 
graphical representations are 
restricted to the F1-F2 plane. 
The figure to the left shows 
the data set represented in 
this plane (The formant fre­
quencies are normalized to 
the range [0,1]). 

In the following experiments, we use binary branching HME's exclusively, but in 
general the growing algorithm poses no restrictions on the tree branching factor. 
We compare a standard, balanced HME of depth 3 with an HME that grows from 
a two expert tree to a tree with the same number of experts (eight) as the standard 
HME. The size of the standard HME was chosen based on a number of experiments 
with different sized HME's to find an optimal one. Fig. 1 shows the topology 
of the standard and the fully grown HME together with histograms of the gating 
probability distributions at the internal nodes. 

Fig. 2 shows results on 4-dimensional feature vectors in terms of correct classifi­
cation rate and log-likelihood. The growing HME achieved a slightly better (1.6% 
absolute) classification rate than the fixed HME. Note also, that the growing HME 
outperforms the fixed HME even before it reaches its full size. The growing HME 
was expanded every 4 iterations, which explains the bumpiness of the curves. 
Fig. 3 shows the impact of path pruning during training on the final classification 
rate of the grown HME's. The pruning factor ranges from no pruning to full pruning 
(e.g. only the most likely path survives). 
Fig. 4 shows how the gating networks partition the feature space. It contains plots 
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Figure 2: Classification rate and log-likelihood for standard and growing HME 
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Figure 3: Impact of path pruning during training of growing HME's 

of the activation regions of all 8 experts of the standard HME in the 2-dimensional 
range [-0.1, 1.1]2. Activation probabilities (product of gating probabilities from 
root to expert) are colored in shades of gray from black to white. Fig. 5 shows the 
same kind of plot for all 8 experts of the grown HME. The plots in the upper right 
corner illustrate the class boundaries obtained by each HME. 

Figure 4: Expert activations for standard HME 

Fig. 4 reveals a weakness of standard HME's: Gating networks at high levels in the 
tree can pinch off whole branches, rendering all the experts in the subtree useless. 
In our case, half of the experts of the standard HME do not contribute to the final 
decision at all (black boxes). The growing HME's are able to overcome this effect . 
All the experts of the grown HME (Fig. 5) have non-zero activation patterns and 
the overlap between experts is much higher in the growing case, which indicates a 
higher degree of cooperation among experts. This can also be seen in the histogram 
trees in Fig. 3, where gating networks in lower levels of the grown tree tend to 
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Figure 5: Expert activations for grown HME 

average the experts outputs. The splits formed by the gating networks also have 
implications on the way class boundaries are formed by the HME. There are strong 
de~endencies visible between the class boundaries and some of the experts activation 
reglOns. 

EXPERIMENTS ON SWITCHBOARD 

We recently started experiments using standard and growing HME's as estima­
tors of .posterior phone probabilities in a hybrid version of the JANUS [9] speech 
recognizer. Following the work in [12], we use different HME's for each state of 
a phonetic HMM. The posteriors for 52 phonemes computed by the HME's are 
converted into scaled likelihoods by dividing by prior probabilities to account for 
the likelihood based training and decoding of HMM's. During training, targets for 
the HME's are generated by forced-alignment using a baseline mixture of Gaussian 
HMM system. We evaluate the system on the Switchboard spontaneous telephone 
speech corpus. Our best current mixture of Gaussians based context-dependent 
HMM system achieves a word accuracy of 61.4% on this task, which is among the 
best current systems [7]. We started by using phonetic context-independent (CI) 
HME's for 3-state HMM's. We restricted the training set to all dialogues involv­
ing speakers from one dialect region (New York City), since the whole training set 
contains over 140 hours of speech. Our aim here was, to reduce training time (the 
subset contains only about 5% of the data) to be able to compare different HME 
architectures. 

Context I ff experts Word Acc. 

I 64 CI 33.8~ 
64 35.1 0 

Figure 6: Preliminary results on Switchboard telephone data 

To improve performance, we then build context-dependent (CD) models consisting 
of a separate HME for each biphone context and state. The Cb HME's output is 
smoothed with the CI models based on prior conteie probabilities. Current work 
focuses on improving context modeling (e.g. larger contexts and decision tree based 
clustering) . 

Fig. 6 summarizes the results so far, showing consistently that growing HME's 
outperform equally sized standard HME's. The results are not directly comparable 



Adaptively Growing Hierarchical Mixtures of Experts 465 

with our best Gaussian mixture system, since we restricted context modeling to 
biphones and used only a small subset of the Switchboard database for training. 

CONCLUSIONS 

In this paper, we presented a method for adaptively growing Hierarchical Mixtures 
of Experts. We showed, that the algorithm allows the HME to use the resources 
(experts) more efficiently than a standard pre-determined HME architecture. The 
tree growing algorithm leads to better classification performance compared to stan­
dard HME's with equal numbers of parameters. Using growing instead of fixed 
HME's as continuous density estimators in a hybrid speech recognition system also 
improves performance. 
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