
Computing with infinite networks

Christopher K. I. Williams
Neural Computing Research Group

Department of Computer Science and Applied Mathematics
Aston University, Birmingham B4 7ET, UK

c.k.i.williamsGaston.ac.nk

Abstract

For neural networks with a wide class of weight-priors, it can be
shown that in the limit of an infinite number of hidden units the
prior over functions tends to a Gaussian process. In this paper an­
alytic forms are derived for the covariance function of the Gaussian
processes corresponding to networks with sigmoidal and Gaussian
hidden units. This allows predictions to be made efficiently using
networks with an infinite number of hidden units, and shows that,
somewhat paradoxically, it may be easier to compute with infinite
networks than finite ones.

1 Introduction

To someone training a neural network by maximizing the likelihood of a finite
amount of data it makes no sense to use a network with an infinite number of hidden
units; the network will "overfit" the data and so will be expected to generalize
poorly. However, the idea of selecting the network size depending on the amount
of training data makes little sense to a Bayesian; a model should be chosen that
reflects the understanding of the problem, and then application of Bayes' theorem
allows inference to be carried out (at least in theory) after the data is observed.

In the Bayesian treatment of neural networks, a question immediately arises as to
how many hidden units are believed to be appropriate for a task. Neal (1996) has
argued compellingly that for real-world problems, there is no reason to believe that
neural network models should be limited to nets containing only a "small" number
of hidden units. He has shown that it is sensible to consider a limit where the
number of hidden units in a net tends to infinity, and that good predictions can be
obtained from such models using the Bayesian machinery. He has also shown that
for fixed hyperparameters, a large class of neural network models will converge to
a Gaussian process prior over functions in the limit of an infinite number of hidden
units.

296 C. K. I. Williams

Neal's argument is an existence proof-it states that an infinite neural net will
converge to a Gaussian process, but does not give the covariance function needed
to actually specify the particUlar Gaussian process. In this paper I show that
for certain weight priors and transfer functions in the neural network model, the
covariance function which describes the behaviour of the corresponding Gaussian
process can be calculated analytically. This allows predictions to be made using
neural networks with an infinite number of hidden units in time O(n3), where n
is the number of training examples l . The only alternative currently available is to
use Markov Chain Monte Carlo (MCMC) methods (e.g. Neal, 1996) for networks
with a large (but finite) number of hidden units. However, this is likely to be
computationally expensive, and we note possible concerns over the time needed for
the Markov chain to reach equilibrium. The availability of an analytic form for
the covariance function also facilitates the comparison of the properties of neural
networks with an infinite number of hidden units as compared to other Gaussian
process priors that may be considered.

The Gaussian process analysis applies for fixed hyperparameters B. If it were de­
sired to make predictions based on a hyperprior P(B) then the necessary B-space
integration could be achieved by MCMC methods. The great advantage of integrat­
ing out the weights analytically is that it dramatically reduces the dimensionality
of the MCMC integrals, and thus improves their speed of convergence.

1.1 From priors on weights to priors on functions

Bayesian neural networks are usually specified in a hierarchical manner, so that the
weights ware regarded as being drawn from a distribution P(wIB). For example,
the weights might be drawn from a zero-mean Gaussian distribution, where B spec­
ifies the variance of groups of weights. A full description of the prior is given by
specifying P(B) as well as P(wIB). The hyperprior can be integrated out to give
P(w) = J P(wIB)P(B) dB, but in our case it will be advantageous not to do this as
it introduces weight correlations which prevent convergence to a Gaussian process.

In the Bayesian view of neural networks, predictions for the output value y .. cor­
responding to a new input value x .. are made by integrating over the posterior in
weight space. Let D = ((XI,t1),(xz,tz), ... ,(xn,tn» denote the n training data
pairs, t = (tl'" .,tnl and ! .. (w) denote the mapping carried out by the network
on input x .. given weights w. P(wlt, B) is the weight posterior given the training
dataz. Then the predictive distribution for y .. given the training data and hyper­
parameters B is

(1)

We will now show how this can also be viewed as making the prediction using priors
over functions rather than weights. Let f(w) denote the vector of outputs corre­
sponding to inputs (Xl, ... , xn) given weights w. Then, using Bayes' theorem we
have P(wlt,8) = P(tlw)P(wI8)/ P(tI8), and P(tlw) = J P(tly) o(y - f(w» dy.
Hence equation 1 can be rewritten as

P(y .. It, 8) = P(~18) J J P(tly) o(Y .. - ! .. (w»o(y - f(w» P(wI8) dw dy (2)

However, the prior over (y .. , YI, ... , Yn) is given by P(y .. , y18) = P(y .. Iy, 8)P(yI8) =
J o(Y .. - ! .. (w) o(y- f(w»P(wI8) dw and thus the predictive distribution can be

1 For large n, various ap'proximations to the exact solution which avoid the inversion of
an n x n matrix are available.

2For notational convenience we suppress the x-dependence of the posterior.

Computing with Infinite Networks 297

written as

P(y .. lt,8) = P(~18) J P(tly)P(y .. ly, 8)P(yI8) dy = J P(y .. ly, 8)P(ylt, 8) dy

(3)
Hence in a Bayesian view it is the prior over function values P(y .. , Y18) which is
important; specifying this prior by using weight distributions is one valid way to
achieve this goal. In general we can use the weight space or function space view,
which ever is more convenient, and for infinite neural networks the function space
view is more useful.

2 Gaussian processes

A stochastic process is a collection of random variables {Y(z)lz E X} indexed by
a set X . In our case X will be nd , where d is the number of inputs. The stochastic
process is specified by giving the probability distribution for every finite subset
of variables Y(zt), ... , Y(Zk) in a consistent manner. A Gaussian process (GP)
is a stochastic process which can be fully specified by its mean function jJ(z) =
E[Y(z)] and its covariance function C(z, z') = E[(Y(z) - jJ(z»(Y(z') - JJ(z'»];
any finite set ofY-variables will have ajoint multivariate Gaussian distribution. For
a multidimensional input space a Gaussian process may also be called a Gaussian
random field.

Below we consider Gaussian processes which have jJ(z) = 0, as is the case for the
neural network priors discussed in section 3. A non-zero JJ(z) can be incorporated
into the framework at the expense of a little extra complexity.

A widely used class of covariance functions is the stationary covariance functions,
whereby C(z, z') = C(z - z') . These are related to the spectral density (or power
spectrum) of the process by the Wiener-Khinchine theorem, and are particularly
amenable to Fourier analysis as the eigenfunctions of a stationary covariance kernel
are exp ik.z . Many commonly used covariance functions are also isotropic, so that
C(h) = C(h) where h = z - z' and h = Ihl. For example C(h) = exp(-(h/oy)
is a valid covariance function for all d and for 0 < v ~ 2. Note that in this case
u sets the correlation length-scale of the random field, although other covariance
functions (e.g. those corresponding to power-law spectral densities) may have no
preferred length scale.

2.1 Prediction with Gaussian processes

The model for the observed data is that it was generated from the prior stochastic
process, and that independent Gaussian noise (of variance u~) was then added.
Given a prior covariance function CP(Zi,Zj), a noise process CN(Zj,Zj) = U~6ij
(i.e. independent noise of variance u~ at each data point) and the training data,
the prediction for the distribution of y .. corresponding to a test point z .. is obtained
simply by applying equation 3. As the prior and noise model are both Gaussian the
integral can be done analytically and P(y .. lt, 8) is Gaussian with mean and variance

y(z ..) = k~(z ..)(Kp + KN)-lt (4)

u2(z ..) = Cp(z .. , z ..) - k~(z ..)(J{p + KN)-lkp(z ..) (5)

where [Ko]ij = Co(Zi, Zj) for a = P, Nand kp(z ..) = (Cp(z .. , zt), ... ,
Cp(z .. , zn»T. u~(z ..) gives the "error bars" of the prediction.

Equations 4 and 5 are the analogue for spatial processes of Wiener-Kolmogorov
prediction theory. They have appeared in a wide variety of contexts including

298 C. K. I. Williams

geostatistics where the method is known as "kriging" (Journel and Huijbregts, 1978;
Cressie 1993), multidimensional spline smoothing (Wahba, 1990), in the derivation
of radial basis function neural networks (Poggio and Girosi, 1990) and in the work
of Whittle (1963).

3 Covariance functions for Neural Networks

Consider a network which takes an input z, has one hidden layer with H units and
then linearly combines the outputs of the hidden units with a bias to obtain fez).
The mapping can be written

H

fez) = b+ L.:vjh(z;uj) (6)
j=l

where h(z; u) is the hidden unit transfer function (which we shall assume is
bounded) which depends on the input-to-hidden weights u. This architecture is
important because it has been shown by Hornik (1993) that networks with one
hidden layer are universal approximators as the number of hidden units tends to
infinity, for a wide class of transfer functions (but excluding polynomials). Let b
and the v's have independent zero-mean distributions of variance O'~ and 0'1) respec­
tively, and let the weights Uj for each hidden unit be independently and identically
distributed. Denoting all weights by w, we obtain (following Neal, 1996)

Ew[!(z)] - 0

Ew[/(z)/(z')] O'~ + L.: O';Eu[hj(z; u)hj(z'; u)]
j

O'l + HO';Eu[h(z; u)h(z'; u)]

(7)

(8)

(9)

where equation 9 follows because all of the hidden units are identically distributed.
The final term in equation 9 becomes w 2 Eu[h(z; u)h(z'; u)] by letting 0'; scale as
w 2 /H.
As the transfer function is bounded, all moments of the distribution will be bounded
and hence the Central Limit Theorem can be applied, showing that the stochastic
process will become a Gaussian process in the limit as H -+ 00.

By evaluating Eu[h(z)h(z')] for all z and z' in the training and testing sets we can
obtain the covariance function needed to describe the neural network as a Gaussian
process. These expectations are, of course, integrals over the relevant probability
distributions of the biases and input weights. In the following sections two specific
choices for the transfer functions are considered, (1) a sigmoidal function and (2) a
Gaussian. Gaussian weight priors are used in both cases.

It is interesting to note why this analysis cannot be taken a stage further to integrate
out any hyperparameters as well . For example, the variance 0'; of the v weights
might be drawn from an inverse Gamma distribution. In this case the distribution
P(v) = J P(vIO';)P(O';)dO'; is no longer the product of the marginal distributions
for each v weight (in fact it will be a multivariate t-distribution). A similar analysis
can be applied to the u weights with a hyperprior. The effect is to make the hidden
units non-independent, so that the Central Limit Theorem can no longer be applied.

3.1 Sigmoidal transfer function

A sigmoidal transfer function is a very common choice in neural networks research;
nets with this architecture are usually called multi-layer perceptrons.

Computing with Infinite Networks 299

Below we consider the transfer function h(z; u) = ~(uo+ 'L1=1 UjXi), where ~(z) =
2/ Vii J; e- t2 dt is the error function, closely related to the cumulative distribution
function for the Gaussian distribution. Appropriately scaled, the graph of this
function is very similar to the tanh function which is more commonly used in the
neural networks literature.

In calculating V(z, Z/)d;J Eu[h(z; U)h(Z/; u)] we make the usual assumptions (e.g.
MacKay, 1992) that u is drawn from a zero-mean Gaussian distribution with co­
variance matrix E, i.e. u "" N(O, E). Let i = (1, Xl, ... , Xd) be an augmented input
vector whose first entry corresponds to the bias. Then Verf(z, Z/) can be written as

Verf(z,z/) = ~ J~(uTi)~(uTi/)exp(-!uTE-lu) du
(211") 2 IE1 1/ 2 2

(10)

This integral can be evaluated analytically3 to give

2 2 -T -1

(
1 • -1 Z .wZ

Verf z, z) = - sm ---;===========
11")(1 + 2iTEi)(1 + 2i/TEi/)

(11)

We observe that this covariance function is not stationary, which makes sense as
the distributions for the weights are centered about zero, and hence translational
symmetry is not present.

Consider a diagonal weight prior so that E = diag(0"5, 0"7, ... ,0"1), so that the inputs
i = 1, ... , d have a different weight variance to the bias 0"6. Then for Iz12, Iz/12»
(1+20"6)/20"1, we find that Verf(z, Z/) ~ 1-20/11", where 0 is the angle between z and
Z/. Again this makes sense intuitively; if the model is made up of a large number of
sigmoidal functions in random directions (in z space), then we would expect points
that lie diametrically opposite (i.e. at z and -z) to be anti-correlated, because
they will lie in the + 1 and -1 regions of the sigmoid function for most directions.

3.2 Gaussian transfer function

One other very common transfer function used in neural networks research is the
Gaussian, so that h(z; u) = exp[-(z - u)T(z - u)/20"~], where 0"; is the width
parameter of the Gaussian. Gaussian basis functions are often used in Radial Basis
Function (RBF) networks (e.g. Poggio and Girosi, 1990).

For a Gaussian prior over the distribution of u so that u "" N(O, O"~I),

1 1 J (z-u)T(z-u) (Z/-u)T(Z/_U) uTu
VG(z,z)=(2)d/2 exp- 2 exp- 2 exp---2G

211"0" u 20" 9 20" 9 20" u

(12)
By completing the square and integrating out u we obtain

(0")d zTz (z - z')T(z - z') zlTz '
VG(Z,Z/) = _e eXP{--2 2 } exp{- 2 2 }exp{--2 2 }

O"U O"m 0"$ O"m
(13)

where 1/0"2 = 2/0"2 + 1/0"2 0"2 = 20"2 + 0"4/0"2 and 0"2 = 20"2 + 0"2 This formula e 9 u' $ 9 gum u g.

can be generalized by allowing covariance matrices Eb and Eu in place of O";! and
O"~!; rescaling each input variable Xi independently is a simple example.

3Introduce a dummy parameter A to make the first term in the integrand ~(AUTX).
Differentiate the integral with respect to A and then use integration by parts. Finally
recognize that dVerfjdA is of the form (1-fP)-1/2d9jdA and hence obtain the sin-1 form
of the result, and evaluate it at A = 1.

300 C. K. I. Williams

Again this is a non-stationary covariance function, although it is interest­
ing to note that if O"~ - 00 (while scaling w 2 appropriately) we find that
VG(Z,Z/) ex: exp{-(z - z/)T(z - z/)/40"2} 4. For a finite value of O"~, VG(Z,Z/)
is a stationary covariance function "modulated" by the Gaussian decay function
exp(_zT z/20"?n) exp(_zIT Zl /20"?n). Clearly if O"?n is much larger than the largest
distance in z-space then the predictions made with VG and a Gaussian process with
only the stationary part of VG will be very similar.

It is also possible to view the infinite network with Gaussian transfer functions as
an example of a shot-noise process based on an inhomogeneous Poisson process
(see Parzen (1962) §4.5 for details). Points are generated from an inhomogeneous
Poisson process with the rate function ex: exp(_zT z/20"~), and Gaussian kernels of
height v are centered on each of the points, where v is chosen iid from a distribution
with mean zero and variance 0"; .

3.3 Comparing covariance functions

The priors over functions specified by sigmoidal and Gaussian neural networks differ
from covariance functions that are usually employed in the literature, e.g. splines
(Wahba, 1990). How might we characterize the different covariance functions and
compare the kinds of priors that they imply?

The complex exponential exp ik.z is an eigenfunction of a stationary and isotropic
covariance function, and hence the spectral density (or power spectrum) S(k)
(k = Ikl) nicely characterizes the corresponding stochastic process. Roughly speak­
ing the spectral density describes the "power" at a given spatial frequency k; for
example, splines have S(k) ex: k- f3 . The decay of S(k) as k increases is essential,
as it provides a smoothing or damping out of high frequencies. Unfortunately non­
stationary processes cannot be analyzed in exactly this fashion because the complex
exponentials are not (in general) eigenfunctions of a non-stationary kernel. Instead,
we must consider the eigenfunctions defined by J C(z, Z/)¢(Z/)dz l =)..¢(z). How­
ever, it may be possible to get some feel for the effect of a non-stationary covariance
function by looking at the diagonal elements in its 2d-dimensional Fourier trans­
form, which correspond to the entries in power spectrum for stationary covariance
functions.

3.4 Convergence of finite network priors to GPs

From general Central Limit Theorem results one would expect a rate of convergence
of H-l/2 towards a Gaussian process prior. How many units will be required
in practice would seem to depend on the particular values of the weight-variance
parameters. For example, for Gaussian transfer functions, O"rn defines the radius
over which we expect the process to be significantly different from zero. If this
radius is increased (while keeping the variance of the basis functions O"~ fixed) then
naturally one would expect to need more hidden units in order to achieve the same
level of approximation as before. Similar comments can be made for the sigmoidal
case, depending on (1 + 20"6)/20"1-

I have conducted some experiments for the sigmoidal transfer umction, comparing
the predictive performance of a finite neural network with one Input unit to the
equivalent Gaussian process on data generated from the GP. The finite network
simulations were carried out using a slightly modified version of Neal's MCMC
Bayesian neural networks code (Neal, 1996) and the inputs were drawn from a

4Note that this would require w2 - 00 and hence the Central Limit Theorem would no
longer hold, i.e. the process would be non-Gaussian.

Computing with Infinite Networks 301

N(O,l) distribution. The hyperparameter settings were UI = 10.0, 0"0 = 2.0, O"v =
1.189 and Ub = 1.0. Roughly speaking the results are that 100's of hidden units
are required before similar performance is achieved by the two methods, although
there is considerable variability depending on the particular sample drawn from the
prior; sometimes 10 hidden units appears sufficient for good agreement.

4 Discussion

The work described above shows how to calculate the covariance function for sig­
moidal and Gaussian basis functions networks. It is probable similar techniques will
allow covariance functions to be derived analytically for networks with other kinds
of basis functions as well; these may turn out to be similar in form to covariance
functions already used in the Gaussian process literature.

In the derivations above the hyperparameters 9 were fixed. However, in a real data
analysis problem it would be unlikely that appropriate values of these parameters
would be known. Given a prior distribution P(9) predictions should be made by
integrating over the posterior distribution P(9It) ()(P(9)P(tI9), where P(tI9) is
the likelihood of the training data t under the model; P(tI9) is easily computed for
a Gaussian process. The prediction y(z) for test input z is then given by

y(z) = J Y9(z)P(9ID)d9 (14)

where Y9(z) is the predicted mean (as given by equation 4) for a particular value
of 9. This integration is not tractable analytically but Markov Chain Monte Carlo
methods such as Hybrid Monte Carlo can be used to approximate it. This strategy
was used in Williams and Rasmussen (1996), but for stationary covariance functions,
not ones derived from Gaussian processes; it would be interesting to compare results.

Acknowledgements

I thank David Saad and David Barber for help in obtaining the result in equation 11, and
Chris Bishop, Peter Dayan, Ian Nabney, Radford Neal, David Saad and Huaiyu Zhu for
comments on an earlier draft of the paper. This work was partially supported by EPSRC
grant GR/J75425, "Novel Developments in Learning Theory for Neural Networks".

References
Cressie, N. A. C. (1993). Statistics for Spatial Data. Wiley.
Hornik, K. (1993). Some new results on neural network approximation. Neural Net­

works 6 (8), 1069-1072.
Journel, A. G. and C. J. Huijbregts (1978). Mining Geostatistics. Academic Press.
MacKay, D. J. C. (1992). A Practical Bayesian Framework for Backpropagation Net­

works. Neural Computation 4(3), 448-472.
Neal, R. M. (1996). Bayesian Learning for Neural Networks. Springer. Lecture Notes in

Statistics 118.
Parzen, E. (1962). Stochastic Processes. Holden-Day.
Poggio, T. and F. Girosi (1990). Networks for approximation and learning. Proceedings

of IEEE 78, 1481-1497.
Wahba, G. (1990). Spline Models for Observational Data. Society for Industrial and Ap­

plied Mathematics. CBMS-NSF Regional Conference series in applied mathematics.
Whittle, P. (1963). Prediction and regulation by linear least-square methods. English

Universities Press.
Williams, C. K. I. and C. E. Rasmussen (1996). Gaussian processes for regression. In

D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo (Eds.), Advances in Neural
Information Processing Systems 8, pp. 514-520. MIT Press.

