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Abstract 
This paper presents a method that decides which combinations of traffic 
can be accepted on a packet data link, so that quality of service (QoS) 
constraints can be met. The method uses samples of QoS results at dif­
ferent load conditions to build a neural network decision function. Pre­
vious similar approaches to the problem have a significant bias. This 
bias is likely to occur in any real system and results in accepting loads 
that miss QoS targets by orders of magnitude. Preprocessing the data to 
either remove the bias or provide a confidence level, the method was 
applied to sources based on difficult-to-analyze ethernet data traces. 
With this data, the method produces an accurate access control function 
that dramatically outperforms analytic alternatives. Interestingly, the 
results depend on throwing away more than 99% of the data. 

1 INTRODUCTION 

In a communication network in which traffic sources can be dynamically added or 
removed, an access controller must decide when to accept or reject a new traffic source 
based on whether, if added, acceptable service would be given to all carried sources. 
Unlike best-effort services such as the internet, we consider the case where traffic sources 
are given quality of service (QoS) guarantees such as maximum delay, delay variation, or 
loss rate. The goal of the controller is to accept the maximal number of users while guar­
anteeing QoS. To accommodate diverse sources such as constant bit rate voice, variable­
rate video, and bursty computer data, packet-based protocols are used. We consider QOS 
in terms of lost packets (Le. packets discarded due to resource overloads). This is broadly 
applicable (e.g. packets which violate delay guarantees can be considered lost) although 
some QoS measures can not fit this model. 

The access control task requires a classification function-analytically or empirically 
derived-that specifies what conditions will result in QoS not being met. Analytic func­
tions have been successful only on simple traffic models [Gue91], or they are so conserva­
tive that they grossly under utilize the network. This paper describes a neural network 
method that adapts an access control function based on historical data on what conditions 
packets have and have not been successfully carried. Neural based solutions have been 
previously applied to the access control problem [Hir90][Tra92] [Est94], but these 
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approaches have a distinct bias that under real-world conditions leads to accepting combi­
nations of calls that miss QoS targets by orders of magnitude. Incorporating preprocessing 
methods to eliminate this bias is critical and two methods from earlier work will be 
described. The combined data preprocessing and neural methods are applied to difficult­
to-model ethernet traffic. 

2 THE PROBLEM 

Since the decision to accept a multilink connection can be decomposed into decisions on 
the individual links, we consider only a single link. A link can accept loads from different 
source types. The loads consist of packets modeled as discrete events. Arriving packets are 
placed in a buffer and serviced in turn. If the buffer is full, excess packets are discarded 
and treated as lost. The precise event timing is not critical as the concern is with the num­
ber of lost packets relative to the total number of packets received in a large sample of 
events, the so-called loss rate. The goal is to only accept load combinations which have a 
loss rate below the QoS target denoted by p*. 

Load combinations are described by a feature vector, $, consisting of load types and possi­
bly other information such as time of day. Each feature vector, $, has an associated loss 
rate, p($), which can not be measured directly. Therefore, the goal is to have a classifier 
function, C($), such that C($) >, <, = 0 if p($) <, >, = p*. 

Since analytic C($) are not in general available, we look to statistical classification meth­
ods. This requires training samples, a desired output for each sample, and a significance or 
weight for each sample. Loads can be dynamically added or removed. Training samples 
are generated at load transitions, with information since the last transition containing the 
number of packet arrivals, T, the number of lost packets, s, and the feature vector, $. 
A sample ($i' si' Ti), requires a desired classification, d($i> si' Ti) E {+1, -1}, and a weight, 
W($i' s;. Ti) E (0,00). Given a data set {($i' si' Ti)}, a classifier, C, is then chosen that mini-

mizes the weighted sum squared error E = 2:j[w(~j, Sj, Tj)(C(~i) -d(~i' S;, T j»2]. 

A classifier, with enough degrees of freedom will set C($i) = d($i' si' 1j) if all the $i are dif­
ferent. With multiple samples at the same $ then we see that the error is minimized when 

C(~) = (2: _ _ [w(~j, Si' Tj)d(~j, Sj, T;)])/(2: _ _ W(~i' Sj, T;». (1) 
{iI~, "'~} {il~i "'~} 

Thus, the optimal C($) is the weighted average of the d($i' si' Ti) at $. If the classifier has 
fewer degrees of freedom (e.g. a low dimension linear classifier), C($) will be the average 
of the d($i' si' 1j) in the neighborhood of $, where the neighborhood is, in general, an 
unspecified function of the classifier. 

A more direct form of averaging would be to choose a specific neighborhood around $ and 
average over samples in this neighborhood. This suffers from having to store all the sam­
ples in the decision mechanism, and incurs a significant computational burden. More sig­
nificant is how to decide the size of the neighborhood. If it is fixed, in sparse regions no 
samples may be in the neighborhood. In dense regions near decision boundaries, it may 
average over too wide a range for accurate estimates. Dynamically setting the neighbor­
hood so that it always contains the k nearest neighbors solves this problem, but does not 
account for the size of the samples. We will return to this in Section 4. 

3 THE SMALL SAMPLE PROBLEM 

Neural networks have previously been a£plied to the access control proElem [Hir91] 
[Tra92][Est94]. In [Hir90] and [Tra92], d(<I>i' si' Ti) = +1 when s;lTi < p*, d(<I>i' si' 1j) =-1 
otherwise, and the weighting is a uniform w($i' si' Ti) = 1 for all i. This desired out and 
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uniform weighting we call the normal method. For a given load combination, lP, assume an 
idealized system where packets enter and with probability p(<P) independent of earlier or 
later packets, the packet is labeled as lost. In a sample of T such Bernoulli trials with S the 
number packets lost, let PB = P{s/T> p*}. Since with the normal method d(lP, s, 1) = -1 if 
sIT> p*, PB = P{d(lP, s, 1) = -I}. From (1), with uniform weighting the decision bound­
ary is where PB = 0.5. If the samples are small (i.e. T < (In 2)/p* < IIp*), d(lP, s, 1) =-1 for 

all s > O. In this case PB = 1 - (1 -p(lP)l Solving for p(lP) at PB = 0.5 using In(1 - x) "" -x, 
the decision boundary is at p(lP) "" (In 2)ff > p*. So, for small sample sizes, the normal 
method boundary is biased to greater than p* and can be made orders of magnitude larger 
as T becomes smaller. For larger T, e.g. Tp* > 10, this bias will be seen to be negligible. 

One obvious solution is to have large samples. This is complicated by three effects. The 
first is that desired loss rates in data systems are often small; typically in the range 
1O-ti_1O-12. This implies that to be large, samples must be at least 107_1013 packets. For 
the latter, even at Gbps rates, short packets, and full loading this translates into samples of 
several hours of traffic. Even for the first at typical rates, this can translate into minutes of 
traffic. The second, related problem is that in dynamic data networks, while individual 
connections may last for significant periods, on the aggregate a given combination of loads 
may not exist for the requisite period. The third more subtle problem is that in any queue­
ing system even with uncorrelated arrival traffic the buffering introduces memory in the 
system. A typical sample with losses may contain 100 losses, but a loss trace would show 
that all of the losses occurred in a single short overload interval. Thus the number of inde­
pendent trials can be several orders of magnitude smaller than indicated by the raw sample 
size indicating that the loads must be stable for hours, days, or even years to get samples 
that lead to unbiased classification. 

An alternative approach used in [Hir95] sets d(lP, s, 1) = sIT and models p(lP) directly. The 
probabilities can vary over orders of magnitude making accurate estimates difficult. Esti­
mating the less variable 10g(p(lP» with d = 10g(s/1) is complicated by the logarithm being 
undefined for small samples where most samples have no losses so that s = o. 
4 METHODS FOR TREATING BIAS AND VARIANCE 

We present without proof two preprocessing methods derived and analyzed in [Br096] . 
The first eliminates the sample bias by choosing an appropriate d and w that directly 
solves (1) s.t. c(lP) >, <, = 0 if and only if p(lP) <, >, = p* i.e. it is an unbiased estimate as 
to whether the loss rate is above and below p*. This is the weighting method shown in 
Table 1. The relative weighting of samples with loss rates above and below the critical loss 
rate is plotted in Figure 1. For large T, as expected, it reduces to the normal method. 

The second preprocessing method assigns uniform weighting, but classifies d(lP, s, 1) = 1 
only if a certain confidence level, L, is met that the sample represents a combination where 
p(lP) < p*. Such a confidence was derived in [Bro96]: 

Table 1: Summary of Methods. 

Sample Class Weighting, w(<!>j, Sj, TD, when 
Method d(<Pj, Sj, Ti) = + 1 if d(lPi, Sj, Tj ) = + 1 (i.e. w +) d(lPj, si, Tj) = -1 (i.e. w-) 

Normal si::;;Lp*TJ 1 1 

Weighting si::;;Lp*T J TL (~)P*i(l_ p*{-i TL (~)p*i(l_ p*{-i 
i>Lp*T J I!>Lp*TJ 

Aggregate Table 2 1 1 
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S i 
- T ·~(Tp*) 

P{p(<I»>p*ls,T}=e- P £..J-'-'-
l. 

(2) 

i =0 

For small T (e.g. T < IIp* and L > 1 - lie), even if s = 0 (no losses), this level is not met. 
But, a neighborhood of samples with similar load combinations may all have no losses 
indicating that this sample can be classified as having p( $) < p*. Choosing a neighborhood 
requires a metric, m, between feature vectors, $. In this paper we simply use Euclidean 
distance. Using the above and solving for T when s = 0, the smallest meaningful neighbor­
hood size is the smallest k such that the aggregate sample is greater than a critical size, 
1'* = -In(1- L)/p*. From (2), this guarantees that if no packets in the aggregate sample are 
lost we can classify it as having p«(j») < p* within our confidence level. For larger samples, 
or where samples are more plentiful and k can afford to be large, (2) can be used directly. 
Table 2 summarizes this aggregate method. 

The above preprocessing methods assume that the training samples consist of independent 
samples of Bernoulli trials. Because of memory introduced by the buffer and possible cor­
relations in the arrivals, this is decidedly not true. The methods can still be applied, if sam­
ples can be subsampled at every Ith trial where I is large enough so that the samples are 
pseudo-independent, i.e. the dependency is not significant for our application. 

A simple graphical method for determining I is as follows. Observing Figure I, if the 
number of trials is artificially increased, for small samples the weighting method will tend 
to under weight the trials with errors, so that its decision boundary will be at erroneously 
high loss rates. This is the case with correlated samples. The sample size, T, overstates the 
number of independent trials. As the subsample factor is increased, the subsample size 
becomes smaller, the trials become increasingly independent, the weighting becomes 
more appropriate, and the decision boundary moves closer to the true decision boundary. 
At some point, the samples are sufficiently independent so that sparser subsampling does 
not change the decision boundary. By plotting the decision boundary of the classifier as a 
function of I, the point where the boundary is independent of the subsample factor indi­
cates a suitable choice for I . 

In summary, the procedure consists of collecting traffic samples at different combinations 
of traffic loads that do and do not meet quality of service. These are then subsampled with 
a factor I determined as above. Then one of the sample preprocessing methods, summa­
rized in Table I , are applied to the data. These preprocessed samples are then used in any 
neural network or classification scheme. Analysis in [Br096] derives the expected bias 
(shown in Figure 2) of the methods when used with an ideal classifier. The normal method 
can be arbitrarily biased, the weighting method is unbiased, and the aggregate method 
chooses a conservative boundary. Simulation experiments in [Br096] applying it to a well 
characterized MIMII queueing system to determine acceptable loads showed that the 
weighting method was able to produce unbiased threshold estimates over a range of val-

Table 2: Aggregate Classification Algorithm 

1. Given Sample (<I>i' si, Ti) E {(<I>i' si,1j)} , metric, m, and confidence level, L. 

2. Calculate T* = -InC 1 - L)/ p*. 

3. Find nearest neighbors no, nl' .. , where no = i and m($nj, $i) ~ m($nj+I' $i) for j ~ O. 
k k 

4. Choose smallest k S.t. T' = LTnj ~ T*. Let S' = L sn/ 
j=O j=O . _ {+1 ifP{p($»p*ls',T}«I-L) 

5. Usmg (2), d(<I>;, s;, T;) = 1 . 
- o.w. 
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Figure 1: Plot of Relative Weighting of 
Samples with Losses Below (w-) and 
Above (w +) the Critical Loss Rate. 
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Figure 2: Expected Decision Normalized 
by p*. The nominal boundary is P/P* = 1. 
The aggregate method uses L = 0.95. 

ues; and the aggregate method produced conservative estimates that were always below 
the desired threshold, although in terms of traffic load were only 5% smaller. Even in this 
simple system where the input traffic is uncorrelated (but the losses become correlated due 
the memory in the queue), the subsample factor was 12, meaning that good results 
required more than 90% of the data be thrown out. 

5 EXPERIMENTS WITH ETHERNET TRAFFIC DATA 

This paper set out to solve the problem of access control for real world data. We consider a 
system where the call combinations consist of individual computer data users trunked onto 
a single output link. This is modeled as a discrete-time single-server queueing model 
where in each time slot one packet can be processed and zero or more packets can arrive 
from the different users. The server has a buffer of fixed length 1000. To generate a realis­
tic arrival process, we use ethernet data traces. The bandwidth of the link was chosen at 
from 100100Mbps. With 48 byte packets, the queue packet service rate was the bandwidth 
divided by 384. All arrival rates are normalized by the service rate. 

5.1 THEDATA 

We used ethemet data described in [Le193] as the August 89 busy hour containing traffic 
ranging from busy file-servers/routers to users with just a handful of packets. The detailed 
data set records every packet's arrival time (to the nearest l00llsec), size, plus source and 
destination tags. From this, 108 "data traffic" sources were generated, one for each com­
puter that generated traffic on the ethernet link. To produce uniform size packets, each eth­
ernet packet (which ranged from 64 to 1518 bytes) was split into 2 to 32 48-byte packets 
(partial packets were padded to 48 bytes). Each ethernet packet arrival time was mapped 
into a particular time slot in the queueing model. All the packets arriving in a times lot are 
immediately added to the buffer, any buffer overflows would be discarded (counted as 
lost), and if the buffer was non-empty at the start of the timeslot, one packet sent. Ethernet 
contains a collision protocol so that only one of the sources is sending packets at anyone 
time onto a lOMbps connection. Decorrelating the sources via random starting offsets, 
produced independent data sources with the potential for overloads. Multiple copies at dif­
ferent offsets produced sufficient loads even for bandwidths greater than 10Mbps. 

The peak data rate with this data is fixed, while the load (the average rate over the one hour 
trace normalized by the peak rate) ranges over five orders of magnitude. Also troubling, 
analysis of this data [LeI93] shows that the aggregate traffic exhibits chaotic self-similar 
properties and suggests that it may be due to the sources' distribution of packet inter­
arrival times following an extremely heavy tailed distribution with infinite higher order 
moments. No tractable closed form solution exists for such data to predict whether a par­
ticular load will result in an overload. Thus, we apply adaptive access control. 
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5.2 EXPERIMENT AND RESULTS 

We divided the data into two roughly similar groups of 54 sources each; one for training 
and one for testing. To create sample combinations we assign a distribution over the differ­
ent training sources, choose a source combination from this distribution, and choose a ran­
dom, uniform (over the period of the trace) starting time for each source. Simulations that 
reach the end of a trace wrap around to the beginning of the trace. The sources are 
described by a single feature corresponding to the average load of the source over the one 
hour data trace. A group of sources is described by the sum of the average loads. The 
source distribution was a uniformly chosen O-M copies of each of the 54 training samples. 
M was dynamically chosen so that the link would be sufficiently loaded to cause losses. 
Each sample combination was processed for 3x107 time slots, recording the load combi­
nation, the number of packets serviced correctly, and the number blocked. The experiment 
was repeated for a range of bandwidths. The bandwidths and number of samples at each 
bandwidth are shown in Table 3 

We applied the three methods of Table 1 based on p* = 10-6 (L = 95% for the aggregate 
method) and used the resulting data in a linear classifier. Since the feature is the load and 
larger loads will always cause more blocking,p(<I» is a one variable monotonic function. A 
linear classifier is sufficient for this case and its output is simply a threshold on the load. 

To create pseudo-independent trials necessary for the aggregate and weighting methods, 
we subsampled every lth packet. Using the graphical method of Section 4, the resulting I 
are shown in column 4 of Table 3. A typical subsample factor is 200. The sample sizes 
ranged from 105 to 107 trials, But, after subsampling by a factor of 200, even for the larg-
est samples, p*T < 0.05 « 1. . 

The thresholds found by each method are shown in Table 3. To get loss rate estimates at 
these thresholds, the average loss rate of the 20% of source combinations below each 
method's threshold is computed. Since accepted loads would be below the threshold this is 
a typical loss rate. The normal scheme is clearly flawed with losses 10 times higher than 
p*, the weighting scheme's loss rate is apparently unbiased with results around p*, while 
the aggregate scheme develops a conservative boundary below p*. To test the boundaries, 
we repeated the experiment generating source combination samples using the 54 sources 
not used in the training. Table 3 also shows the losses on this test set and indicates that the 
training set boundaries produce similar results on the test data. 

The boundaries are compared with those of more conventional, model-based techniques. 
One proposed technique for detecting overloads appears in [Gue91]. This paper assumes 
the sources are based on a Markov On/Off model. Applying the method to this ethernet 
data (treating each packet arrival as an On period and calculating necessary parameters 
from there), all but the very qighest loads in the training sets are classified as acceptable 
indicating that the loss rate would be orders of magnitude higher than p*. A conservative 
technique is to accept calls only as long as the sum of the peak source transmission rates is 
less than the link bandwidth. For the lOMbps link, since this equals the original ethemet 

Table 3: Results from Experiments at Different Link Bandwidth. 

Band- Number of Sub- Threshold Found & Loss Rate 

width Samples sample at Threshold on (train/test) Set 

(Mbps) Train Test Factor Normal Weighting Aggregate 

10 1569 1080 230 0.232 (1e-5/4e-6) 0.139 (8e-7/le-6) 0.105 (I e-7/8e-8) 

17.5 2447 3724 180 0.415 (2e-5/3e-5) 0.268 (5e-7/ge-7) 0.215 (3e-9/4e-7) 

30 6696 4219 230 0.508 (7e-6/4e-5) 0.333 (4e-6/5e-8) 0.286 (3e-7I2e-8) 

100 1862 N.A. 180 0.688 (le-51N.A.) 0.566 (5e-71N.A.) 0.494 (Oe-OIN.A.) 
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data rate, this peak rate method will accept exactly one source. Averaging over all sources, 
the average load would be 0.0014 and would not increase with increasing bandwidth. The 
neural method takes advantage of better trunking at increasing bandwidths, and carries 
two orders of magnitude more traffic. 

6 CONCLUSION 

Access control depends on a classification function that decides if a given set of load con­
ditions will violate quality of service constraints. In this paper quality of service was in 
terms of a maximum packet loss rate, p* . Given that analytic methods are inadequate 
when given realistic traffic sources, a neural network classification method based on sam­
ples of traffic results at different load conditions is a practical alternative. With previous 
neural network approaches, the synthetic nature of the experiments obscured a significant 
bias that exists with more realistic data. This bias, due to the small sample sizes relative to 
l/p*, is likely to occur in any real system and results in accepting loads with losses that are 
orders of magnitude greater than p*. 

Preprocessing the data to either remove the bias or provide a confidence level, the neural 
network was applied to sources based on difficult-to-analyze ethernet data traces. A group 
of sources was characterized by its total load so that the goal was to simply choose a 
threshold on how much load the link would accept. The neural network was shown to pro­
duce accurate estimates of the correct threshold. Interestingly these good results depend 
on creating traffic samples representing independent packet transmissions. This requires 
more than 99% of the data to be thrown away indicating that for good performance an 
easy-to-implement sparse sampling of the packet fates is sufficient. It also indicates that 
unless the total number of packets that is observed is orders of magnitude larger than l/p*, 
the samples are actually small and preprocessing methods such as in this paper must be 
applied for accurate loss rate classification. 

In comparison to analytic techniques, all of the methods, are more accurate at identifying 
overloads. In comparison to the best safe alternative that works even on this ethernet data, 
the neural network method was able to carry two orders of magnitude more traffic. The 
techniques in this paper apply to a range of network problems from routing, to bandwidth 
allocation, network design, as well as access control. 
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