
Representation and Induction of Finite
State Machines using Time-Delay Neural

Networks

Daniel S. Clouse
Computer Science & Engineering Dept.

C. Lee Giles
NEC Research Institute

4 Independence Way
Princeton, NJ 08540

giles@research.nj .nec.com

University of California, San Diego
La Jolla, CA 92093-0114

dclouse@ucsd.edu

Bill G. Horne
NEC Research Institute

4 Independence Way
Princeton, N J 08540

horne@research.nj.nec.com

Garrison W. Cottrell
Computer Science & Engineering Dept.

University of California, San Diego
La Jolla, CA 92093-0114

gcottrell@ucsd.edu

Abstract

This work investigates the representational and inductive capabili­
ties of time-delay neural networks (TDNNs) in general, and of two
subclasses of TDNN, those with delays only on the inputs (IDNN),
and those which include delays on hidden units (HDNN) . Both ar­
chitectures are capable of representing the same class of languages,
the definite memory machine (DMM) languages, but the delays on
the hidden units in the HDNN helps it outperform the IDNN on
problems composed of repeated features over short time windows.

1 Introduction

In this paper we consider the representational and inductive capabilities of time­
delay neural networks (TDNN) [Waibel et al., 1989] [Lang et al., 1990], also known
as NNFIR [Wan, 1993]. A TDNN is a feed-forward network in which the set of
inputs to any node i may include the output from previous layers not only in the
current time step t, but from d earlier time steps as well. The activation function

404 D. S. Clouse, C. L Giles, B. G. Home and G. W. Cottrell

for node i at time t in such a network is given by equation 1:
i-l d

y! = h(I: I: yJ-kWijk) (1)
j=lk=O

where y: is the activation of node i at time t, Wijk is the connection strength from
node j to node i at delay k, and h is the squashing function.

TDNNs have been used in speech recognition [Waibel et al., 1989], and time series
prediction [Wan, 1993]. In this paper we concentrate on the language induction
problem. A training set of variable-length strings taken from a discrete alphabet
{O, 1} is generated. Each string is labeled as to whether it is in some language L
or not. The network must learn to discriminate strings which are in the language
from those which are not, not only for the training set strings, but for strings the
network has never seen before. The language induction problem provides a simple,
familiar domain in which to gain insight into the capabilities of different network
archi tect ures.

Specifically, in this paper, we will look at the representational and inductive capa­
bilities of the general class of TDNNs versus a subclass of TDNNs, the input-delay
neural networks (IDNNs). An IDNN is a TDNN in which delays are limited to
the network inputs . In section 2, we will show that the classes of functions repre­
sentable by general TDNNs and IDNNs are equivalent. In section 3, we will show
that the class of languages representable by the TDNNs, are the definite memory
machine (DMM) languages. In section 4, we will demonstrate the inductive ca­
pability of the TDNNs in a simulation in which a large DMM is learned using a
small percentage of the possible, short training examples. In section 5, a second set
of simulations will show the difference between representational and inductive bias,
and will demonstrate the utility of internal delays in a TDNN network.

2 TDNN sand IDNN s Are Functionally Equivalent

Since every IDNN is also a TDNN, the set of functions computable by any TDNN
includes all those computable by the IDNNs. [Wan, 1993] also shows that the IDNNs
can compute any function computable by the TDNNs making these two classes of
network architectures functionally equivalent. For completeness, here we include a
description of how to construct from a TDNN, an equivalent IDNN.

Figure 1a shows a TDNN with a single input U at the current time (Ut), and at
four earlier time steps (Ut-l ... Ut-4). The inputs to node R consist of the outputs
of nodes P and Q at the current time step along with one or two previous time
steps. At time t, node P computes !p(Ut, . . . Ut-4), a function of the current input
and four delays. At time t -1, node P computes !P(Ut-l, ... Ut-s). This serves as
one of the delayed inputs to node R. This value could also be computed by sliding
node P over one step in the input tap-delay line along with its incoming weights as
shown in figure lb. Using this construction, all the internal delays can be removed,
and replaced by copies of the original nodes P and Q, along with their incoming
weights. This method can be applied recursively to remove any internal delay in any
TDNN network. Thus, for any function computable by a TDNN, we can construct
an IDNN which computes the same function.

3 TDNNs Can Represent the DMM Languages

In this section , we show that the set of languages which are representable by some
TDNN are exactly those languages representable by the definite memory machines

Representation and Induction of Finite State Machines using TDNNs

a) Generu TDNN

fp (u1 •. ··• u l-4)

fp(u 1.!.,,·. u1•5)

fp (u 1.2 •. ". u1•6)

U t u t.! · · ut·6

b) Equivalent IDNN

Figure 1: Constructing an IDNN equivalent to a given TDNN

405

(DMMs). According to Kohavi (1978) a DMM of order d is a finite state machine
(FSM) whose present state can always be determined uniquely from the knowledge
of the most recent d inputs. We equivalently define a DMM of order d as an FSM
whose accepting/rejecting behavior is a function of only the most recent d inputs.

To fit TDNNs and IDNNs into the language induction framework, we consider only
networks with a single 0/1 input. Since any boolean function can be represented
by a feed-forward network with enough hidden units [Horne and Hush, 1994], an
IDNN exists which can perform the mapping from d most recent inputs to any
accepting/rejecting behavior. Therefore, any DMM language can be represented
by some IDNN. Since every IDNN computes a function of its most recent d inputs,
by the definition of DMM, there is no boolean output IDNN which represents a
non-DMM language. Therefore, the IDNNs represent exactly the DMM languages.
Since the TDNN and IDNN classes are functionally equivalent, TDNNs implement
exactly the DMM languages as well.

The shift register behavior of the input tap-delay line in an IDNN completely de­
termines the state transition behavior of any machine represented by the network.
This state transition behavior is fixed by the architecture. For example, figure 2a
shows the state transition diagram for any machine representable by an IDNN with
two input delays. The mapping from the current state to "accept" or "reject" is all
that can be changed with training. Clouse et al. (1994) describes the conditions
under which such a mapping results in a minimal FSM. All mappings used in the
subsequent simulations are minimal FSM mappings.

4 Simulation 1: Large DMM

To demonstrate the close relationship between TDNNs and DMMs, here we present
the results of a simulation in which we trained an IDNN to reproduce the behavior
of a DMM of order 11. The mapping function for the DMM is given in equation 2.
Figure 2b shows the minimal 2048 state transition diagram required to represent
the DMM. The symbol ~ in equation 2 represents the if-and-only-iffunction. The
overbar notation, Uk, represents the negation of Uk, the input at time k. Yk is the
network output at time k. Yk > 0.5 is interpreted as "accept the string seen so far."
Yk ~ 0.5 means "reject."

Yk = Uk-IO ~ (Uk U k-IU k-2 + Uk-2Uk-3 + Uk-l Uk-2) (2)
To create training and test sets, we randomly split in two the set of all 4094

406 D. S. Clouse, C. L. Giles, B. G. Home and G. W Cottrell

a) DMM of order 3 b) DMM of order 11

Figure 2: Transition diagrams for two DMMs.

0.4

Is
S
! I ~ 0.2

J II
0.0 !.i.•..... l•.....•....•....•.... •....•....•....•....•....•..

10 20 30
Percent of total samples (4094) used in training

Figure 3: Generalization error on 2048 state DMM.

strings of length 11 or less. We will report results using various percentages of
possible strings for the training set . The IDNN had 10 input tap-delays, and seven
hidden units. All tap-delays were cleared to 0 before introduction of a new input
string. Weights were trained using online back propagation with learning rate 0.25,
and momentum 0.25. To speed up the algorithm, weights were updated only if the
absolute error on an example was greater than 0.2. Training was stopped when
weight updates were required for no examples in the training set. This generally
required 200 epochs or fewer, though there were trials which required almost 4000
epochs.

Each point in figure 3 represents the mean classification error on the test set across
20 trials. Error bars indicate one standard deviation on each side of the mean.
Each trial consists of a different randomly-chosen training set. The graph plots
error at various training set sizes. Note that with training sets as small as 12
percent of possible strings the network generalizes perfectly to the remaining 88
percent. This kind of performance is possible because of the close match between
the representational bias of the IDNN and this specific problem.

5 Simulation 2: Inductive biases of IDNNs and HDNNs

In section 2, we showed that the IDNNs and general TDNNs can represent the same
class offunctions. It does not follow that these two architectures are equally capable
of learning the same functions. In this section, we show that the inductive biases are

Representation and Induction of Finite State Machines using TDNNs 407

indeed different. We will present our intuitions about the kinds of problems each
architecture is well suited to learning, then back up our intuitions with supporting
simulations.

In the following simulations, we compare two specific networks. The network repre­
senting the general TDNNs includes delays on hidden layer outputs. We'll refer to
this as the hidden delay neural network or HDNN. All delays in the second network
are confined to the network inputs, and so we call this the IDNN.

We have been careful to design the two networks to be comparable in size. Each
of the networks contains two hidden layers. The first hidden layer of the IDNN has
four units, and the second five. The IDNN has eight input delays. Each of the two
hidden layers of the HDNN has three units. The HDNN has three input delays, and
five delays on the output of each node of the first hidden layer. Note that in each
network the longest path from input to output requires eight delays. The number
of weights, including bias weights, are also similar - 76 for the HDNN, and 79 for
the IDNN.

In order for the size of the two networks to be similar, the HDNN must have fewer
delays on the network inputs. If we think of each unit in the first hidden layer
as a feature detector, the feature detectors in the HDNN will span a smaller time
window than the IDNN. On the other hand, the HDNN has a second set of delays
which saves the output of the feature detectors over several time steps. If some
narrow feature repeats over time, this second set of delays should help the HDNN
to pick up this regularity. The IDNN, lacking the internal delays, should find it
more difficult to detect this kind of repeated regularity.

To test these ideas, we generated four DMM problems. We call equation 3 the
narrow-repeated problem because it contains a number of identical terms shifted in
time, and because each of these terms is narrow enough to fit in the time window
of the HDNN first layer feature detectors.

Yk = Uk-8 +-+ (Uk Uk-2U k-3 + Uk-1Uk-3U k-4 + Uk-3Uk-SU k-6 + Uk-4 Uk-6U k-7)
(3)

The wide-repeated problem, represented by equation 4, is identical to the narrow­
repeated problem except that each term has been stretched so that it will no longer
fit in the HDNN feature detector time window.

Yk = Uk-8 +-+ (Uk Uk-2U k-4 + Uk-1 U k-3U k-S + Uk-2 Uk-4U k-6 + Uk-3Uk-SU k-7)
(4)

The narrow-unrepeated problem, represented by equation 5, is composed of narrow
terms, but none of these terms is simply a shifted reproduction of another.

Yk = Uk-8 +-+ (Uk Uk-2U k-3 + Uk-l Uk-3Uk-4 + Uk-3U k-SU k-6 + Uk-4U k-6U k-7)

(5)
Lastly, the wide-unrepeated problem of equation 6 contains wide terms which do not
repeat.

Yk = Uk-8 +-+ (Uk Uk-3U k-4 + Uk-1Uk-4Uk-S + Uk-2U k-SUk-6 + Uk-3U k-6U k-7)

(6)
Each problem in this section requires a minimum of 512 states to represent.

Similar to the simulation of section 3, we trained both networks on subsets of all
possible strings of length 9 or less. Since these problems were more difficult than
that of section 3, often the networks were unable to find a solution which performed
perfectly on the training set. In this case, training was stopped after 8000 epochs.
The results reported later include these trials as well as trials in which training
ended because of perfect performance on the training set. Training for the HDNN

408 D. S. Clouse, C. L. Giles, B. G. Home and G. W Cottrell

0.4

I I
04

I I ~
r:s o IDNN architecture

j -HDNN iKhitectun:

J 02

f f
02 ,

IIII!LI\J
e
!
"

IJ1!lJLU 0.0 0.0 -._
p_orlalal_ _iIIlralII/Ioi

20 40 60 20 40 60
(a) Narrow·Repealed (b) Narrow·Unrepealed

.. /

" I i I
.. 'I
., iii

11\111\ 111111f 0.0 • •. . • .•.... • ..•••.. _ ..• 0.0•.... ...

20 40 60 20 40 60
(e) Wide·Repeated (d) Wide-U"",peated

Figure 4: Generalization of a HDNN and an IDNN on four DMM problems

was identical to that of the IDNN except that error was propagated back across the
internal delays as in Wan (1993) .

Figure 4 plots generalization error versus percentage of possible strings used in
training for the two networks for each of the four DMM problems. If our intuitions
were correct we would expect to see evidence here that the effect of wider terms,
and lack of repetition would have a stronger adverse effect on the HDNN network
than on the IDNN. This is exactly what we see. The position of the curve for the
IDNN network is stable compared to that of the HDNN when changes are made to
the width and repetition factors .

Statistical analysis supports this conclusion. We ran an ANOVA test [Rice, 1988]
with four factors (which network, term width, term repetition, and training set
size) on the data summarized by the graphs of figure 4. The test detected a sig­
nificant interaction between the network and width factors (M Snetxwid = 0.3430,
F(l, 1824) = 234.4) , and between the network and repetition factors (MSnetxrep =
0.1181, F(l, 1824) = 80.694). These two interactions are significant at p < 0.001,
agreeing with our conclusion that width and repetition each has a stronger effect
on the performance of the HDNN network.

Further planned tests reveal that the effects of width and repetition are strong
enough to change which network generalizes better . We ran a one-way ANOVA
test on each problem individually to see which network performs better across the
entire curve. The tests reveal that the HDNN performs with significantly less error
than the IDNN in the narrow-repeated problem (M Serror = 0.0015, M Snet -
0.5400, F(1,1824) = 369.0), and in the narrow-unrepeated problem (M Snet =
0.0683, F(1 , 1824) = 46.7). Performance of the IDNN is significantly better in
the wide-unrepeated problem (M Snet = 0.0378 , F(l, 1824) = 25.83). All of these
comparisons are significant at p < 0.001. The test on the wide-repeated problem
finds no significant difference in performance of the two networks (M Snet = 0.0004,

Representation and Induction of Finite State Machines using TDNNs 409

F(l, 1824) = 0.273, p > 0.05).

In addition to confirming our intuitions about the kinds of problems that internal
delays should be helpful in solving, this set of simulations demonstrates the differ­
ence between representational and inductive bias. For all DMM problems except
for the wide-unrepeated one, we were able to find, for each network, at least one
set of weights which solve the problem perfectly. Despite the fact that the two
networks are both capable of representing the problems, the differing way in which
they respond to the width and repetition factors demonstrates a difference in their
learning biases.

6 Conclusions

This paper presents a number of interesting ideas concerning TDNNs using both
theoretical and empirical techniques. On the theoretical side, we have precisely
defined the subclass of FSMs which can be represented by TDNNs, the DMM
languages. It is interesting to note that this network architecture which has no re­
current connections is capable of representing languages whose transition diagrams
require loops.

Other ideas were demonstrated using empirical techniques. First, we have shown
that the number of states required to represent an FSM may be a poor predictor of
how difficult the language is to learn. We were able to learn a 2048-state FSM using
a small percentage of the possible training examples. This is possible because of
the close match between the representational bias of the network, and the language
learned.

Second, we presented a set of simulations which demonstrated the utility of internal
delays in a TDNN. These delays were shown to improve generalization on problems
composed of features over short time intervals which reappear repeatedly.

Third, that same set of simulations highlights the difference between representa­
tional bias, and inductive bias. Though these two terms are sometimes used inter­
changeably in the theoretical literature, this work shows that the two concepts are,
in fact, separable.

References

[Clouse et al., 1994] Clouse, D. S., Giles, C. 1., Horne, B. G., and Cottrell, G. W. (1994).
Learning large debruijn automata with feed-forward neural networks. Technical Report
CS94-398, University of California, San Diego, Computer Science and Engineering Dept.

[Horne and Hush, 1994] Horne, B. G. and Hush, D. R. (1994). On the node complexity
of neural networks. Neural Networks, 7(9):1413-1426.

[Kohavi, 1978] Kohavi, Z. (1978). Switching and Finite Automata Theory. McGraw-Hill,
Inc., New York, NY, second edition.

[Lang et al., 1990] Lang, K, Waibel, A., and Hinton, G. (1990). A time-delay neural
network architecture for isolated word recognition. Neural Networks, 3(1):23-44.

[Rice, 1988] Rice, J. A. (1988). Mathematical Statistics and Data Analysis. Brooks/Cole
Publishing Company, Monterey, California.

[Waibel et al., 1989] Waibel, A., Hanazawa, T., Hinton, G., Shikano, K, and Lang, K
(1989) . Phoneme recognition using time-delay neural networks. IEEE Transactions on
Acoustics, Speech and Signal Processing, 37(3):328-339.

[Wan, 1993] Wan, E. A. (1993). Time series prediction by using a connectionist network
with internal delay lines. In Weigend, A. S. and Gershenfeld, N. A., editors, Time Series
Prediction: Forecasting the Future and Understanding the Past. Addison Wesley.

