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Abstract 

Binocular rivalry is the alternating percept that can result when 
the two eyes see different scenes. Recent psychophysical evidence 
supports an account for one component of binocular rivalry similar 
to that for other bistable percepts. We test the hypothesisl9, 16, 18 

that alternation can be generated by competition between top­
down cortical explanations for the inputs, rather than by direct 
competition between the inputs. Recent neurophysiological ev­
idence shows that some binocular neurons are modulated with 
the changing percept; others are not, even if they are selective be­
tween the stimuli presented to the eyes. We extend our model to 
a hierarchy to address these effects. 

1 Introduction 

Although binocular rivalry leads to distinct perceptual distress, it is revealing 
about the mechanisms of visual information processing. The first accounts for 
rivalry argued on the basis of phenomena such as increases in thresholds for test 
stimuli presented in the suppressed eye24 , 8, 3 that there was a early competitive 
process, the outcome of which meant that the system would just ignore input 
from one eye in favour of the other. Various experiments have suggested that 
simple input competition cannot be the whole story. For instance, in a case in 
which rivalry is between a vertical grating in the left eye and a horizontal one 
in the right, and in which a vertical grating is presented prior to rivalry to cause 
adaptation, the relative suppression of vertical during rivalry is independent of 

1 I am very grateful to Bart Anderson, Adam Elga, Geoff Goodhill, Geoff Hinton, David 
Leopold, Earl Miller, Read Montague, Bruno Olshausen, Pawan Sinha, Rich Zemel, and 
particularly Zhaoping Li and Tommi Jaakkola for their comments on earlier drafts and 
discussions. This work was supported by the NIH. 
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the eye of origin of the adapting grating.4 Even more compelling, if the rivalrous 
stimuli in the two eyes are switched rapidly, the percept switches only slowly -
competition is more between coherent percepts than merely inputs. Rivalry is an 
attractive paradigm for studying models of cortex like the Helmholtz machine12, 7 
that construct coherent percepts, and in particular for studying hierarchical models, 
because of electrophysiological data on the behaviour during rivalry of cells at 
different levels of the visual processing hierarchy.16 

Leopold & Logothetis16 trained monkeys to report their percepts during rivalrous 
and non-rivalrous stimuli whilst recording from neurons VI/2 and V4. Important 
findings are that striate monocular neurons are unaffected by rivalry; some striate 
binocular neurons that are selective between the stimuli modulate their activities 
during rivalry; others do not; some fire more when their preferred stimuli are 
suppressed; others still are only selective during rivalry. In this paper we consider 
one form of analysis-by-synthesis model of cortical processing7 and show how it 
can exhibit rivalry between explanations in the case that the eyes receive different 
input. This model can provide an account for many of the behaviours described 
above. 

2 The Model 

Figure Ia shows the full generative model. Units in layers y (modeling VI) and 
x and w (modeling early and late extra-striate areas) are all binocular and jointly 
explain successively more complex features in the input z according to a top-down 
generative model. Apart from the half bars in y, the model is similar to that 
learned by the Helmholtz machine12, 7 for which increasing complexity in higher 
layers rather than the increasing input scale is key. In this case, for instance, w2 

specifies the occurrence of vertical bars anywhere in the 8 x 8 input grids; X16 

specifies the rightmost vertical bar; and Y31 and Y32 the top and bottom half of this 
vertical bar. These specifications are provided by a top-down generative model in 
which the activations of units are specified by probabilities such as P[Yi = Ilx] = 
a (by + Lk xkJ!~) where the sum k is over all the units in the x layer, and 0'0 
is a robust normal distribution function. We model the percept in terms of the 
activation in the w layer. 

We model differing input contrasts by representing the input to Zi by di , where 
P[Zi = 1] = O'(di ) and all the Zi are independent. Recognition is formally the sta­
tistical inverse to generation, and should produce distribution P[w, x, yld] over all 
the choices of the hidden activations. We use a mean field inversion method,13 
using a factorised approximation Q[w,x, y; Il,~,~] = Q[w; Il]Q][x; ~]Q[y; ~], with 
Q[w; Il] = TIi O'(lli)Wi (1 - O'(lli))l-Wi, etc, and fitting the parameters Il,~, ~ to min­
imise the approximation cost: 

[ ] "'P[ d] '" Q[ C .1']1 Q[w,x,y;Il,~,~] :F Il,~, ~ = L.J z; L.J w, x, y; Il, ,-, 'f/ og P[w x Iz] . 
z wxy , ,y , , 

We report the mean activities of the units in the graphs and use a modified gradient 
descent method to find appropriate parameters. Figure Ib shows the resulting 
activities of units in response to binocular horizontal (i) and vertical (ii) bars, and 
also the two equally likely explanations for rivalrous input (iii and iv). For rivalry, 
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Figure 1: a) Hierarchical generative model for 8 x 8 bar patterns across the two eyes. Units are 
depicted by their net projective (generative) fields, and characteristic weights are shown. Even though 
the net projective field of Xl is the top horizontal bar in both eyes, note that it generates this by increasing 
the probability that units YI and Y9 in the y layer will be active, not by having direct connections to 
the input z. Unit WI connects to Xl, X2, .•• Xs through Jwx = 0.8; XI6 connects to Y31 , Y32 through 
JXY = 1.0 and Y32 connects to the bottom right half vertical bar through Jyz = 5.8. Biases are 
bw = -0.75,bx = -1.5, by = -2.7 and bz = -3.3. b) Recognition activity in the network for four 
different input patterns. The units are arranged in the same order as (a), and white and black squares 
imply activities for the units whose means are less than and greater than 0.5. (i) and (ii) represent normal 
binocular stimulation; (iii) and (iv) show the two alternative stable states during rivalrous stimulation, 
without the fatigue process. 

there is direct competition in the top left hand quadrant of z, which is reflected in the 
competition between YI, Y3 and Y17, Y21. However, the input regions (top right of L 
and bottom left of R) for which there is no competition, require the constant activity 
of explanations Y9, Yu ,Y18 and Y22. Under the generative model, the coactivation 
of YI and Y9 without Xl is quite unlikely (P[XI = OIYI = 1, Y3 = 1] = 0.1), which is 
why XI, X3 and also WI become active with YI and Y3. 

Given just gradient descent for the rivalrous stimulus, the network would just find 
one of the two equally good (or rather bad) solutions in figure 1b(iii,iv). Alternation 
ensues when descent is augmented by a fatigue process: 

= 'l/JI(t) +<5(-\7I/JIF[1L,~,'l/J] + a ({3'l/JI (t)) -'l/J~(t)) 
'l/J~ (t) + <5('l/JI (t) - {3'l/J~ (t)), 

where {3 is a decay term. In all the simulations, a = 0.5, {3 = 0.1 and <5 = 0.01. 

We adopted various heuristics to simplify the process of using this rather cumber­
some mean field model. First, fatigue is only implemented for the units in the y 
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layer, and the 'I.jJ follow the equivalent of the dynamical equations above. Although 
adaptation processes can clearly occur at many levels in the system, and indeed 
have been used to try to diagnose the mechanisms of rivalry,15 their exact form is 
not clear. Bialek & DeWeese l argue that the rate of a switching process should be 
adaptive to the expected rate of change of the associated signal on the basis of prior 
observations. This is clearly faster nearer to the input. 

The second heuristic is that rather than perform gradient descent for the non­
fatiguing units, the optimal values of f.1. and ~ are calculated on each iteration by 
solving numerically equations such as 

The dearth of connections in the network of figure la allows f.1. and ~ to be calculated 
locally at each unit in an efficient manner. Whether this is reasonable depends on 
the time constants of settling in the mean field model with respect to the dynamics 
of switching, and, more particularly on the way that this deterministic model is 
made appropriately stochastic. 

Figure 2a shows the resulting activities during rivalry of units at various levels of 
the hierarchy including the fatigue process. Broadly, the competing explanations 
in figure Ib(iii;iv), ie horizontal and vertical percepts, alternate, and units without 
competing inputs, such as Y9, are much less modulated than the others, such as Yl. 
The activity of Y9 is slightly elevated when horizontal bars are dominant, based on 
top-down connections. The activities of the units higher up, such as Xl and WI, do 
not decrease to 0 during the suppression period for horizontal bars, leaving weak 
activity during suppression. Many of the modulating cells in monkeys were not 
completely silent during their periods of less activity.16 Figure 2b shows that the 
hierarchical version of the model also behaves in accordance with experimental 
results on the effects of varying the input contrast,17, 10, 22, 16 which suggest that 
increasing the contrast in both eyes decreases the period of the oscillation (ie in­
creases the frequency), and increasing the contrast in just one eye decreases the 
suppression period for that eye much more than it increases its dominance period. 

3 Discussion 

Following Logothetis and his colleaguesl9 , 16, 18 (see also Grossbergll ) we have 
suggested an account of rivalry based on competing top-down hierarchical ex­
planations, and have shown how it models various experimental observations on 
rivalry. Neurons explain inputs in virtue of being capable of generating their activ­
ities through a top-down statistical generative model. Competition arises between 
higher-level explanations of overlapping active regions (ie those involving contrast 
changes) of the input rather than between inputs themselves. Note that alternating 
the input between the two eyes would have no effect on this behaviour of the 
model, since explanations are competing rather than inputs. Of course, the model 
is greatly simplified - for instance, it only has units that are not modulating with 
the percept in the earliest binocular layer (layer y), whereas in the monkeys, more 
than half the cells in V4 were unmodulated during rivalry.I6 

The model's accounts of the neurophysiological findings described in the introduc­
tion are: i) monocular cells will generally not be modulated if they are involved in 



52 

a) Iterations ------+ 

o 

::r 
0.0 

:: - x, ~ 
00 Q) 

~ ~ 
3 Q 

~::n, 1 I 11.1 11-" I 
' .0~ 

0.5~-Y. 

0,0 O'-----,:-:':OOO:::-----::2000:::-:-----:::3000~---::.OOO 

P. Dayan 

b) Contrast Dependence 
600 r---------------------, 

- - - equal contrast 
- horizontal dominance (1=1 .25) 
---- vertical dominance (r) 

------------

500 

1.0 12 lA 1~ 

Test vertical 'contrast' (r) 

Figure 2: a) Mean activities of units at three levels of the hierarchy in response to rivalrous stimuli 
with input strengths I = r = 1.75. b) Contrast dependence of the oscillation periods for equal input 
strengths, and when I = 1.25 and r is varied. 

explaining local correlations in the input from a single eye. This model does not 
demonstrate this explicitly, but would if, for instance, each of the inputs Zi actually 
consisted of two units, which are always on or off together. In this case one could 
get a compact explanation of the joint activities with a set of monocular units which 
would then not be modulated. ii) Units such as Y9 in the hierarchical model are 
binocular, are selective between the binocular version of the stimuli, and are barely 
modulated with the percept. iii) Units such as YI, Xl and WI are binocular, are 
selective between the stimuli, and are significantly modulated with the percept. 

The final neurophysiological finding is to do with cells that fire when their preferred 
stimuli are suppressed, or fire selectively between the stimuli only during rivalry. 
There are no units in this model that are selective between the stimuli and are 
preferentially activated during suppression of their preferred stimuli. However, in 
a model with more complicated stimulus contingencies, they would emerge to 
account for the parts of the stimulus in the suppressed eye that are not accounted 
for by the explanation of the overlying parts of the dominant explanation, at least 
provided that this residual between the true monocular stimulus and the current 
explanation is sufficiently complex as to require explaining itself. 

We would expect to find two sets of cells that are activated during the suppressed 
period by this residual, some of which will form part of the representation of the 
stimulus when presented binocularly and some of which will not. Those that do 
not (class A) will only even appear to be selective between the stimuli during 
rivalry, and will represent parts of the residual that are themselves explained by 
more overarching explanations for parts of the complete (binocularly presented) 
stimulus. This suggests the experimental test of presenting binocularly a putative 
form of the residual (eg dotted lines for competing horizontal and vertical gratings). 
We predict that these cells should be activated. 

If there are cells that do participate in the binocular representation, then they will 
be selective, but will preferentially fire during suppression (class B). Certainly, the 
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residual will have a high correlation with the full suppressed pattern, and so a 
cell that is selective for part of the residual could have appropriate properties. 
However, why should such a cell not fire when the full, but currently suppressed, 
pattern is dominant? In monkeys,16 there are fewer class B than class A cells (0 
versus 3 of 33 cells in Vl/2; 6 versus 8 of 68 cells in V4). Under the model, we 
account for these cells based on a competition between units that represent the 
residual and those that represent overlapping parts of the complete pattern. In 
binocular viewing, explanations are generally stronger than during rivalry. So 
even if both such units participate in representing a binocular stimulus, the cells 
representing the residual might not reach threshold during the dominance period. 
However, during suppression, they no longer suffer from competition, and so will 
be activated. The model's explanation for class B cells seems far less natural than 
that for class A cells. One experimental test would be to present the preferred 
pattern binocularly, reduce the contrast, and see if these cells are suppressed more 
strongly. 

The overall model mechanistically has much in common with models which place 
the competition in rivalry at the level of binocular oriented cells rather than between 
monocular cells.11 ,2 Indeed, the model is based on an explanation-driven account 
for normal binocular processing, so this is to be expected. The advantage of 
couching rivalry in terms of explanations is that this provides a natural way of 
accounting for top-down influences. In fact, one can hope to study top-down 
control through studying its effects on the behaviour of cells during rivalry. 

The model suffers from various lacunce. Foremost, it is necessary to model the 
stochasticity of switching between explanations.9 ,17 The distributions of domi­
nance times for both humans and monkeys is well characterised by a r distribution 
(Lehky14 argues that this is descriptive rather than normative), with strong in­
dependence between successive dominance periods. Our mean field recognition 
process is deterministic. The stochastic analogue would be some form of Markov 
chain Monte-Carlo method such as Gibbs sampling. However, it is not obvious 
how to incorporate the equivalent of fatigue in a computationally reasonable way. 
In any case, the nature of neuronal randomness is subject to significant debate at 
present. Note that the recognition model of a stochastic Helmholtz machine7,6 
would be unsuitable, since it is purely feedforward and does not integrate bottom­
up and top-down information. 

We have adopted a very simple mean field approach to recognition, giving up 
neurobiological plausibility for convenience. The determinism of the mean field 
model in any case rules it out as a complete explanation, but it does at least 
show clearly the nature of competition between explanations. The architecture of 
the model is also incomplete. The cortex is replete with what we would model 
as lateral connections between units within a single layer. We have constructed 
generative models in which there are no such direct connections, because they 
significantly complicate the mean field recognition method. It could be that these 
connections are important for the recognition process,6 but modeling their effect 
would require representing them explicitly. This would also allow modeling of the 
apparent diffusive process by which patches of dominance spread and alter. In a 
complete model, it would also be necessary to account for competition between 
eyes in addition to competition between explanations. 24,8,3 
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Another gap is some form of contrast gain control.s The model is quite sensitive 
to input contrast. This is obviously important for the effects shown in figures 2, 
however the range of contrasts over which it works should be larger. It would be 
particularly revealing to explore the effects of changing the contrast in some parts 
of images and examine the consequent effects on the spreading of dominance. 
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