
Gaussian Processes for Bayesian
Classification via Hybrid Monte Carlo

David Barber and Christopher K. I. Williams
Neural Computing Research Group

Department of Computer Science and Applied Mathematics
Aston University, Birmingham B4 7ET, UK

d.barber~aston.ac.uk c.k.i.williams~aston.ac.uk

Abstract

The full Bayesian method for applying neural networks to a pre­
diction problem is to set up the prior/hyperprior structure for the
net and then perform the necessary integrals. However, these inte­
grals are not tractable analytically, and Markov Chain Monte Carlo
(MCMC) methods are slow, especially if the parameter space is
high-dimensional. Using Gaussian processes we can approximate
the weight space integral analytically, so that only a small number
of hyperparameters need be integrated over by MCMC methods.
We have applied this idea to classification problems, obtaining ex­
cellent results on the real-world problems investigated so far .

1 INTRODUCTION

To make predictions based on a set of training data, fundamentally we need to
combine our prior beliefs about possible predictive functions with the data at hand.
In the Bayesian approach to neural networks a prior on the weights in the net induces
a prior distribution over functions. This leads naturally to the idea of specifying our
beliefs about functions more directly. Gaussian Processes (GPs) achieve just that,
being examples of stochastic process priors over functions that allow the efficient
computation of predictions. It is also possible to show that a large class of neural
network models converge to GPs in the limit of an infinite number of hidden units
(Neal, 1996). In previous work (Williams and Rasmussen, 1996) we have applied GP
priors over functions to the problem of predicting a real-valued output, and found
that the method has comparable performance to other state-of-the-art methods.
This paper extends the use of GP priors to classification problems.

The G Ps we use have a number of adjustable hyperparameters that specify quan­
tities like the length scale over which smoothing should take place. Rather than

Gaussian Processes/or Bayesian Classification via Hybrid Monte Carlo 341

optimizing these parameters (e.g . by maximum likelihood or cross-validation meth­
ods) we place priors over them and use a Markov Chain Monte Carlo (MCMC)
method to obtain a sample from the posterior which is then used for making pre­
dictions . An important advantage of using GPs rather than neural networks arises
from the fact that the GPs are characterized by a few (say ten or twenty) hyperpa­
rameters, while the networks have a similar number of hyperparameters but many
(e.g. hundreds) of weights as well, so that MCMC integrations for the networks are
much more difficult .

We first briefly review the regression framework as our strategy will be to transform
the classification problem into a corresponding regression problem by dealing with
the input values to the logistic transfer function. In section 2.1 we show how to
use Gaussian processes for classification when the hyperparameters are fixed , and
then describe the integration over hyperparameters in section 2.3. Results of our
method as applied to some well known classification problems are given in section
3, followed by a brief discussion and directions for future research.

1.1 Gaussian Processes for regression

We outline the GP method as applied to the prediction of a real valued output
y* = y(x*) for a new input value x*, given a set of training data V = {(Xi, ti), i =
1. .. n}

Given a set of inputs X*,X1, ... Xn, a GP allows us to specify how correlated we
expect their corresponding outputs y = (y(xt), y(X2), ... , y(xn)) to be. We denote
this prior over functions as P(y), and similarly, P(y*, y) for the joint distribution
including y*. If we also specify P(tly), the probability of observing the particular
values t = (t1, .. . tn)T given actual values y (i.e. a noise model) then

P(y*lt) = J P(y*,ylt)dy = P~t) J P(y*,y)P(tly)dy (1)

Hence the predictive distribution for y. is found from the marginalization of the
product of the prior and the noise model. If P(tly) and P(y*, y) are Gaussian then
P(Y. It) is a Gaussian whose mean and variance can be calculated using matrix
computations involving matrices of size n x n. Specifying P(y*, y) to be a multidi­
mensional Gaussian (for all values of n and placements of the points X*, Xl , . .. Xn)
means that the prior over functions is a G P. More formally, a stochastic process is a
collection ofrandom variables {Y(x)Ix E X} indexed by a set X. In our case X will
be the input space with dimension d, the number of inputs. A GP is a stochastic
process which can be fully specified by its mean function J.l(x) = E[Y(x)] and its
covariance function C(x,x') = E[(Y(x) - J.l(x))(Y(x') - J.l(x'))]; any finite set of
Y -variables will have a joint multivariate Gaussian distribution. Below we consider
GPs which have J.l(x) == o.

2 GAUSSIAN PROCESSES FOR CLASSIFICATION

For simplicity of exposition, we will present our method as applied to two class
problems as the extension to multiple classes is straightforward.

By using the logistic transfer function u to produce an output which can be in­
terpreted as 11"(x), the probability of the input X belonging to class 1, the job of
specifying a prior over functions 11" can be transformed into that of specifying a prior
over the input to the transfer function. We call the input to the transfer function
the activation, and denote it by y, with 11"(x) = u(y(x)). For input Xi, we will
denote the corresponding probability and activation by 11"i and Yi respectively.

342 D. Barber and C. K. l Williams

To make predictions when using fixed hyperparameters we would like to compute
11-. = !7r.P(7r.lt) d7r., which requires us to find P(7r.lt) = P(7r(z.)lt) for a new
input z •. This can be done by finding the distribution P(y. It) (Y. is the activation of
7r.) and then using the appropriate Jacobian to transform the distribution . Formally
the equations for obtaining P(y. It) are identical to equation 1. However, even if
we use a GP prior so that P(Y., y) is Gaussian, the usual expression for P(tly) =
ni 7r;' (1 - 7rd 1- t , for classification data (where the t's take on values of 0 or 1),
means that the marginalization to obtain P(Y. It) is no longer analytically tractable.

We will employ Laplace's approximation , i.e. we shall approximate the integrand
P(Y., ylt, 8) by a Gaussian distribution centred at a maximum of this function with
respect to Y., Y with an inverse covariance matrix given by - v"v log P(Y., ylt, 8) .
The necessary integrations (marginalization) can then be carried out analytically
(see, e.g. Green and Silverman (1994) §5.3) and we provide a derivation in the
following section.

2.1 Maximizing P(y.,ylt)

Let y+ denote (Y. , y), the complete set of activations. By Bayes' theorem
log P(y+ It) = log P(tly)+log P(y+)-log P(t), and let 'It+ = log P(tly)+log P(y+) .
As P(t) does not depend on y+ (it is just a normalizing factor), the maximum of
P(y+ It) is found by maximizing 'It + with respect to y+. We define 'It similarly in
relation to P(ylt). Using log P(tdyd = tiYi -log(1 + eY'), we obtain

T ~ 1 T -1 1 T n + 1
'It + t y-~log(1+eY')-2y+J{+ y+-210glli.+I--2-log27r (2)

i=1

(3)

where J{+ is the covariance matrix of the GP evaluated at Z1, . .. Zn,Z •. J{+ can
be partitioned in terms of an n x n matrix J{, a n x 1 vector k and a scalar k., viz.

~) (4)

As y. only enters into equation 2 in the quadratic prior term and has no data point
associated with it, maximizing 'It + with respect to y+ can be achieved by first
maximizing 'It with respect to y and then doing the further quadratic optimization
to determine the posterior mean y •. To find a maximum of 'It we use the Newton­
Raphson (or Fisher scoring) iteration ynew = y - ('V'V'It)-1'V'It . Differentiating
equation 3 with respect to y we find

(t - 1r) - J{-1 y

_J{-1 - W

where W = diag(7r1 (1 - 7r1), .. , 7rn (1 - 7rn)), which gives the iterative equation1,

(5)

(6)

(7)

IThe complexity of calculating each iteration using standard matrix methods is O(n3).

In our implementation, however, we use conjugate gradient methods to avoid explicitly
inverting matrices. In addition, by using the previous iterate y as an initial guess for the
conjugate gradient solution to equation 7, the iterates are computed an order of magnitude
faster than using standard algorithms.

Gaussian Processes for Bayesian Classification via Hybrid Monte Carlo 343

Given a converged solution y for Y, fl. can easily be found using y. = kT f{-ly =
kT(t -i'). var(y.) is given by (f{+l + W+)(n1+l)(n+l)' where W+ is the W matrix
with a zero appended in the (n + l)th diagonal position.

Given the (Gaussian) distribution of y. we then wish to find the mean of the dis­
tribution of P(11".lt) which is found from 71-. = J u(y.)P(y.lt) . We calculate this by
approximating the sigmoid by a set of five cumulative normal densities (erf) that
interpolate the sigmoid at chosen points. This leads to a very fast and accurate
analytic approximation for the mean class prediction.

The justification of Laplace's approximation in our case is somewhat different from
the argument usually put forward, e.g. for asymptotic normality of the maximum
likelihood estimator for a model with a finite number of parameters. This is because
the dimension of the problem grows with the number of data points. However , if
we consider the "infill asymptotics" , where the number of data points in a bounded
region increases, then a local average of the training data at any point x will pro­
vide a tightly localized estimate for 11"(x) and hence y(x), so we would expect the
distribution P(y) to become more Gaussian with increasing data.

2.2 Parameterizing the covariance function

There are many reasonable choices for the covariance function . Formally, we are
required to specify functions which will generate a non-negative definite covariance
matrix for any set of points (Xl, . .. , Xk). From a modelling point of view we wish
to specify covariances so that points with nearby inputs will give rise to similar
predictions. We find that the following covariance function works well:

C(x , x') = Vaexp {-~ t WI(XI - XD2}
1=1

(8)

where XI is the Ith component of x and 8 = log(va, W1, .. . , Wd) plays the role of
hyperparameters2.

We define the hyperparameters to be the log of the variables in equation 8 since
these are positive scale-parameters. This covariance function has been studied by
Sacks et al (1989) and can be obtained from a network of Gaussian radial basis
functions in the limit of an infinite number of hidden units (Williams, 1996).

The WI parameters in equation 8 allow a different length scale on each input di­
mension. For irrelevant inputs, the corresponding WI will become small , and the
model will ignore that input. This is closely related to the Automatic Relevance
Determination (ARD) idea of MacKay and Neal (Neal, 1996). The Va variable gives
the overall scale of the prior; in the classification case, this specifies if the 11" values
will typically be pushed to 0 or 1, or will hover around 0.5.

2.3 Integration over the hyperparameters

Given that the GP contains adjustable hyperparameters, how should they be
adapted given the data? Maximum likelihood or (generalized) cross-validation
methods are often used, but we will prefer a Bayesian solution. A prior distri­
bution over the hyperparameters P(8) is modified using the training data to obtain

' the posterior distribution P(8It) ex P(tI8)P(8). To make predictions we integrate

2We call f) the hyperparameters rather than parameters as they correspond closely to
hyperparameters in neural networks.

344 D. Barber and C. K. I. Williams

the predicted probabilities over the posterior; for example, the mean value 7f(:I:*)
for test input :1:* is given by

7f(:I:.) = J 1i-(:I:. 19)P(9It)d9, (9)

where 1i-(:I:* 19) is the mean prediction for a fixed value of the hyperparameters, as
given in section 2.

For the regression problem P(tI9) can be calculated exactly using P(tI9) =
J P(tly)P(yI9)dy , but this integral is not analytically tractable for the classifi­
cation problem. Again we use Laplace's approximation and obtain3

logP(tI9) c:= w(y) + ~IJ{-l + WI + i log27r (10)

where y is the converged iterate of equation 7. We denote the right-hand side of
equation 10 by log Pa(tI9) (where a stands for approximate) .

The integration over 9-space also cannot be done analytically, and we employ a
Markov Chain Monte Carlo method. We have used the Hybrid Monte Carlo (HMC)
method of Duane et al (1987), with broad Gaussian hyperpriors on the parameters.

HMC works by creating a fictitious dynamical system in which the hyperparameters
are regarded as position variables, and augmenting these with momentum variables
p. The purpose of the dynamical system is to give the hyperparameters "inertia"
so that random-walk behaviour in 9-space can be avoided. The total energy, 1l, of
the system is the sum of the kinetic energy, K = pT pj2 and the potential energy, £ .
The potential energy is defined such that p(91D) <X exp(-£), i.e. £ = -log P(tI9)­
logP(9). In practice logPa(tI9) is used instead of log P(tI9). We sample from the
joint distribution for 9 and p given by P(9, p) <X exp(-£ - K); the marginal of this
distribution for 9 is the required posterior. A sample of hyperparameters from the
posterior can therefore be obtained by simply ignoring the momenta.

Sampling from the joint distribution is achieved by two steps: (i) finding new points
in phase space with near-identical energies 1l by simulating the dynamical system
using a discretised approximation to Hamiltonian dynamics, and (ii) changing the
energy 1l by Gibbs sampling the momentum variables.

Hamilton's first order differential equations for 1l are approximated using the
leapfrog method which requires the derivatives of £ with respect to 9. Given a
Gaussian prior on 9, log P(9) is straightforward to differentiate. The derivative of
log Pa(9) is also straightforward, although implicit dependencies of y (and hence
ir) on 9 must be taken into account by using equation 5 at the maximum point to
obtain ayjae = (I + J{W)-l (aKjae)(t - 7r). The computation of the energy can
be quite expensive as for each new 9, we need to perform the maximization required
for Laplace's approximation, equation 10. The Newton-Raphson iteration was ini­
tialized each time with 7r = 0.5, and continued until the mean relative difference of
the elements of W between consecutive iterations was less than 10-4 .

The same step size [is used for all hyperparameters, and should be as large as
possible while keeping the rejection rate low. We have used a trajectory made up of
L = 20 leapfrog steps, which gave a low correlation between successive states4 . This
proposed state is then accepted or rejected using the Metropolis rule depending on

3This requires O(n 3) computation.
4In our experiments, where () is only 7 or 8 dimensional, we found the trajectory length

needed is much shorter than that for neural network HMC implementations.

Gaussian Processes/or Bayesian Classification via Hybrid Monte Carlo 345

the final energy 1{* (which is not necessarily equal to the initial energy 1{ because
of the discretization of Hamilton's equations).

The priors over hyperparameters were set to be Gaussian with a mean of -3 and a
standard deviation of 3. In all our simulations a step size € = 0.1 produced a very
low rejection rate « 5%). The hyperparameters corresponding to the WI'S were
initialized to -2 and that for Va to O. The sampling procedure was run for 200
iterations, and the first third of the run was discarded; this "burn-in" is intended
to give the hyperparameters time to come close to their equilibrium distribution.

3 RESULTS

We have tested our method on two well known two-class classification problems, the
Leptograpsus crabs and Pima Indian diabetes datasets and the multiclass Forensic
Glass dataset5 . We first rescale the inputs so that they have mean zero and unit vari­
ance on the training set. Our Matlab implementations for the HMC simulations for
both tasks each take several hours on a SGI Challenge machine (R10000), although
good results can be obtained in less time. We also tried a standard Metropolis
MCMC algorithm for the Crabs problem, and found similar results, although the
sampling by this method is slower than that for HMC. Comparisons with other
methods are taken from Ripley (1994) and Ripley (1996).

Our results for the two-class problems are presented in Table 1: In the Leptograpsus
crabs problem we attempt to classify the sex of crabs on the basis of five anatomical
attributes. There are 100 examples available for crabs of each sex, making a total
of 200 labelled examples. These are split into a training set of 40 crabs of each
sex, making 80 training examples, with the other 120 examples used as the test set.
The performance of the G P is equal to the best of the other methods reported in
Ripley (1994), namely a 2 hidden unit neural network with direct input to output
connections and a logistic output unit which was trained with maximum likelihood
(Network(l) in Table 1) .

For the Pima Indians diabetes problem we have used the data as made available
by Prof. Ripley, with his training/test split of 200 and 332 examples respectively
(Ripley, 1996). The baseline error obtained by simply classifying each record as
coming from a diabetic gives rise to an error of 33%. Again, the GP method is
comparable with the best alternative performance, with an error of around 20%.

Table 1 Pima Crabs
Neural Network(l) 3
Neural Network(2) 3
Neural Network(3) 75+

Linea.r Discrimina.nt 67 8
Logis tic regres sion 66 4

MARS (degree _ 1) 75 4
PP (4 ridge functions) 75 6

2 Ga.ussia.n Mixture 64 .
Gaussian Process (HMC) 68 3

Table 2 Forenslc Gla.ss
Neural Network (4HU) 23.8%

Linea.r Discriminant 36%
MARS (degree - 1) 3 2 .2'70

PP (5 ridge funct ions) 35%
Ga.u ssia.n Mixture 30 .8%

Decision Tree 32 .2%
Gaussian Process (MAP) 23 .3'70

Gaussian Process (MAP) 69 3

Table 1: Number of test errors for the Pima Indian diabetes and Leptograpsus crabs tasks.
Network(2) used two hidden units and the predictive approach (Ripley, 1994), which uses
Laplace's approximation to weight each network local minimum. Network(3) had one
hidden unit and was trained with maximum likelihood; the results were worse for nets
with two or more hidden units (Ripley, 1996). Table 2: Percentage classification error on
the Forensic Glass task.

5 All available from http://markov .stats. ox. ac. uk/pub/PRNN.

346 D. Barber and C. K I Williams

Our method is readily extendable to multiple class problems by using the softmax
function . The details of this work which will be presented elsewhere, and we simply
report here our initial findings on the Forensic Glass problem (Table 2). This is a 6
class problem, consisting of 214 examples containing 9 attributes. The performance
is estimated using 10 fold cross validation. Computing the MAP estimate took ~
24 hours and gave a classification error of 23.3%, comparable with the best of the
other presented methods .

4 DISCUSSION

We have extended the work of Williams and Rasmussen (1996) to classification
problems, and have demonstrated that it performs well on the datasets we have
tried so far. One of the main advantages of this approach is that the number of
parameters used in specifying the covariance function is typically much smaller than
the number of weights and hyperparameters that are used in a neural network , and
this greatly facilitates the implementation of Monte Carlo methods. Furthermore,
because the Gaussian Process is a prior on function space (albeit in the activation
function space), we are able to interpret our prior more readily than for a model
in which the priors are on the parametrization of the function space, as in neural
network models. Some of the elegance that is present using Gaussian Processes
for regression is lost due to the inability to perform the required marginalisation
exactly. Nevertheless, our simulation results suggest that Laplace's approximation
is accurate enough to yield good results in practice. As methods based on GPs
require the inversion of n x n matrices, where n is the number of training examples,
we are looking into methods such as query selection for large dataset problems.
Other future research directions include the investigation of different covariance
functions and improvements on the approximations employed.

We hope to make our MATLAB code available from http ://www .ncrg.aston.ac.uk/

Acknowledgements

We thank Prof. B. Ripley for making available the Leptograpsus crabs and Pima Indian
diabetes datasets. This work was partially supported by EPSRC grant GRj J75425, "Novel
Developments in Learning Theory for Neural Networks" .

References
Duane, S., A. D. Kennedy, B. J. Pendleton, and D. Roweth (1987) . Hybrid Monte Carlo.

Physics Letters B 195, 216-222.
Green, P. J.and Silverman, B. W . (1994). Nonparametric regression and generalized

linear models. Chapman and Hall.
Neal, R. M. (1996). Bayesian Learning for Neural Networks. Springer. Lecture Notes in

Statistics 118.
Ripley, B. (1996) . Pattern Recognition and Neural Networks. Cambridge.
Ripley, B. D. (1994). Flexible Non-linear Approaches to Classification. In V. Cherkassy,

J. H. Friedman, and H. Wechsler (Eds.), From Statistics to Neural Networks, pp.
105-126. Springer.

Sacks, J., W. J. Welch, T. J. Mitchell, and H. P. Wynn (1989). Design and analysis of
computer experiments. Statistical Science 4(4), 409- 435.

Williams, C. K. 1. Computing with infinite networks. This volume.
Williams, C. K. I. and C. E . Rasmussen (1996). Gaussian processes for regression. In

D. S. Touretzky, M. C . Mozer, and M. E. Hasselmo (Eds.), Advances in Neural
Information Processing Systems 8, pp. 514- 520. MIT Press.

