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Abstract 

A new reinforcement learning architecture for nonlinear control is 
proposed. A direct feedback controller, or the actor, is trained by 
a value-gradient based controller, or the tutor. This architecture 
enables both efficient use of the value function and simple computa­
tion for real-time implementation. Good performance was verified 
in multi-dimensional nonlinear control tasks using Gaussian soft­
max networks. 

1 INTRODUCTION 

In the study of temporal difference (TD) learning in continuous time and space 
(Doya, 1996b), an optimal nonlinear feedback control law was derived using the 
gradient of the value function and the local linear model of the system dynam­
ics. It was demonstrated in the simulation of a pendulum swing-up task that the 
value-gradient based control scheme requires much less learning trials than the con­
ventional "actor-critic" control scheme (Barto et al., 1983). 

In the actor-critic scheme, the actor, a direct feedback controller, improves its con­
trol policy stochastically using the TD error as the effective reinforcement (Fig­
ure 1a). Despite its relatively slow learning, the actor-critic architecture has the 
virtue of simple computation in generating control command. In order to train a 
direct controller while making efficient use of the value function, we propose a new 
reinforcement learning scheme which we call the "actor-tutor" architecture (Fig­
ure 1b). 
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In the actor-tutor scheme, the optimal control command based on the current esti­
mate of the value function is used as the target output of the actor. With the use of 
supervised learning algorithms (e.g., LMSE), learning of the actor is expected to be 
faster than in the actor-critic scheme, which uses stochastic search algorithms (e.g., 
A RP )' The simulation result below confirms this prediction. This hybrid control 
architecture provides a model of functional integration of motor-related brain areas, 
especially the basal ganglia and the cerebellum (Doya, 1996a). 

2 CONTINUOUS TD LEARNING 

First, we summarize the theory of TD learning in continuous time and space (Doya, 
1996b), which is basic to the derivation of the proposed control scheme. 

2.1 CONTINUOUS TD ERROR 

Let us consider a continuous-time, continuous-state dynamical system 

d~;t) = f(x(t), u(t» (I) 

where x E X C R n is the state and u E U C R m is the control input (or the 
action). The reinforcement is given as the function of the state and the control 

r(t) = r(x(t), u(t». (2) 

For a given control law (or a policy) 

u(t) = p(x(t», (3) 

we define the "value function" of the state x(t) as 

100 1 .-j 

VJ'(x(t» = -e--r r(x(s), u(s»ds, 
t T 

(4) 

where x(s) and u(s) (t :5 s < 00) follow the system dynamics (I) and the control 
law (3). Our goal is to find an optimal control law p* that maximizes VJ'(x) for 
any state x EX. Note that T is the time constant of imminence-weighting, which 
is related to the discount factor 'Y of the discrete-time TD as 'Y = 1 _ ~t. 

By differentiating (4) by t, we have a local consistency condition for the value 
function 

(5) 

Let P(x(t» be the prediction of the value function VJ'(x(t» from x(t) by a neural 
network, or some function approximator that has enough capability of generaliza­
tion. The prediction should be adjusted to minimize the inconsistency 

r(t) = r(t) - P(x(t» + T dP~~(t» , (6) 

which is a continuous version of the TD error. Because the boundary condition 
for the value function is given on the attractor set of the state space, correc­
tion of P(x(t» should be made backward into time. The correspondence between 
continuous-time TD algorithms and discrete-time TD(A) algorithms (Sutton, 1988) 
is shown in (Doya, 1996b). 
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Figure 1: (a) Actor-critic (b) Actor-tutor 

2.2 OPTIMAL CONTROL BY VALUE GRADIENT 

According to the principle of dynamic programming (Bryson and Ho, 1975), the 
local constraint for the value function V· for the optimal control law p. is given by 
the Hamilton-Jacobi-Bellman equation 

V·(t) = max [r(x(t), u(t)) + T av·~x(t)) I(x(t), u(t))] . (7) 
u(1)EU x 

The optimal control p* is given by solving the maximization problem in the HJB 
equation, i.e., 

ar(x, u) aV·(x) al(x, u) _ 0 
au +T ax au -. (8) 

When the cost for each control variable is given by a convex potential function Gj 0 

r(x,u) = R(x) - L:Gj(Uj), 
j 

equation (8) can be solved using a monotonic function gj(x) = (Gj)-l(x) as 

Uj = gj (TaV;~X) a/~:~ u)) . 

(9) 

(10) 

If the system is linear with respect to the input, which is the case with many 
mechanical systems, al(x, u)/aUj is independent of u and the above equation gives 
a closed-form optimal feedback control law u = p·(x). 

In practice, the optimal value function is unknown and we replace V·(x) with the 
current estimate of the value function P(x) 

( aPex) al(x, u)) 
u=g T~ au . (11) 

While the system evolves with the above control law, the value function P(x) is 
updated to minimize the TD error (6). In (11), the vector aP(x)/ax represents the 
desired motion direction in the state space and the matrix al(x, u)/au transforms 
it into the action space. The function g, which is specified by the control cost, 
determines the amplitude of control output. For example, if the control cost G is 
quadratic, then (11) reduces to a linear feedback control. A practically important 
case is when 9 is a sigmoid, because this gives a feedback control law for a system 
with limited control amplitude, as in the examples below. 
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3 ACTOR-TUTOR ARCHITECTURE 

It was shown in a task of a pendulum swing-up with limited torque (Doya, 1996b) 
that the above value-gradient based control scheme (11 can learn the task in much 
less trials than the actor-critic scheme. However, computation of the feedback 
command by (11) requires an on-line calculation of the gradient of the value function 
oP(x)/ox and its multiplication with the local linear model of the system dynamics 
a lex, u)/ou, which can be too demanding for real-time implementation. 

One solution to this problem is to use a simple direct controller network, as in the 
case of the actor-critic architecture. The training of the direct controller, or the 
actor, can be performed by supervised learning instead of trial-and-error learning 
because the target output of the controller is explicitly given by (11). Although 
computation of the target output may involve a processing time that is not accept­
able for immediate feedback control, it is still possible to use its output for training 
the direct controller provided that there is some mechanism of short-term memory 
(e.g., eligibility trace in the connection weights). 

Figure l(b) is a schematic diagram of this "actor-tutor" architecture. The critic 
monitors the performance of the actor and estimates the value function. The "tutor" 
is a cascade of the critic, its gradient estimator, the local linear model ofthe system, 
and the differential model of control cost. The actor is trained to minimize the 
difference between its output and the tutor's output. 

4 SIMULATION 

We tested the performance of the actor-tutor architecture in two nonlinear control 
tasks; a pendulum swing-up task (Doya, 1996b) and the global version of a cart-pole 
balancing task (Barto et al., 1983). 

The network architecture we used for both the actor and the critic was a Gaussian 
soft-max network. The output of the network is given by 

K 

Y = I: Wkbk(X), 
k=l 

b ( ) exp[- L:~=1 (~)2] 
k X =",K [_",n (X.-Cli)2]' 

ul=l exp ui=l 3/0 

where (CkI' ... , Ckn) and (Ski, ... , Skn) are the center and the size of the k-th basis 
function. It is in general possible to adjust the centers and sizes of the basis function, 
but in order to assure predictable transient behaviors, we fixed them in a grid. In 
this case, computation can be drastically reduced by factorizing the activation of 
basis functions in each input dimension. 

4.1 PENDULUM SWING-UP TASK 

The first task was to swing up a pendulum with a limited torque ITI ~ Tmax , which 
was about one fifth of the torque that was required to statically bring the pendulum 
up (Figure 2 (a)). This is a nonlinear control task in which the controller has to 
swing the pendulum several times at the bottom to build up enough momentum. 
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triat. 

(a) Pendulum (b) Value gradient 

trial_ 

( c) Actor-Critic ( d) Actor-Tutor 

Figure 2: Pendulum swing-up task. The dynamics of the pendulum (a) is given by 
mle = -ti; + mglsin{} + T. The parameters were m = I = 1, g = 9.8, Jl. = 0.01, 
and Tmax = 2.0. The learning curves for value-gradient based optimal control (b), 
actor-critic (c), and actor-tutor (d); t_up is time during which I{}I < 45°. 

The state space for the pendulum x = ({},w) was 2D and we used 12 x 12 basis 
functions to cover the range I{} I ~ 180° and Iw I ~ 180° / s. The reinforcement for the 
state was given by the height of the tip of the pendulum, i.e., R(x) = cos {} and the 
cost for control G and the corresponding output sigmoid function g were selected 
to match the maximal output torque ymax. 

Figures 2 (b), (c), and (d) show the learning curves for the value-gradient based 
control (11), actor critic, and actor-tutor control schemes, respectively. As we 
expected, the learning of the actor-tutor was much faster than that of the actor­
critic and was comparable to the value-gradient based optimal control schemes. 

4.2 CART-POLE SWING-UP TASK 

Next we tested the learning scheme in a higher-dimensional nonlinear control task, 
namely, a cart-pole swing-up task (Figure 3). In the pioneering work of , the actor­
critic system successfully learned the task of balancing the pole within ± 12° of 
the upright position while avoiding collision with the end of the cart track. The 
task we chose was to swing up the pole from an arbitrary angle and to balance it 
upright. The physical parameters of the cart-pole were the same as in (Barto et al., 
1983) except that the length of the track was doubled to provide enough room for 
swinging. 
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(a) 

(b) (c) 

Figure 3: Cart-pole swing-up task. (a) An example of a swing-up trajectory. (b) 
Value function learned by the critic. (c) Feedback force learned by the actor. Each 
square in the plot shows a slice of the 4D state space parallel to the (0, w) plane. 

Figure 3 (a) shows an example of a successful swing up after 1500 learning trials 
with the actor-tutor architecture. We could not achieve a comparable performance 
with the actor-critic scheme within 3000 learning trials. Figures 3 (b) and (c) show 
the value function and the feedback force field, respectively, in the 4D state space 
x = (x, v, 0, w), which were implemented in 6 x 6 x 12 x 12 Gaussian soft-max 
networks. We imposed symmetric constraints on both actor and critic networks to 
facilitate generalization. It can be seen that the paths to the upright position in 
the center of the track are represented as ridges in the value function. 

5 DISCUSSION 

The biggest problem in applying TD or DP to real-world control tasks is the curse 
of dimensionality, which makes both the computation for each data point and the 
numbers of data points necessary for training very high. The actor-tutor architec­
ture provides a partial solution to the former problem in real-time implementation. 
The grid-based Gaussian soft-max basis function network was successfully used in 
a 4D state space. However, a more flexible algorithm that allocates basis functions 
only in the relevant parts of the state space may be necessary for dealing with 
higher-dimension systems (Schaal and Atkeson, 1996). 

In the above simulations, we assumed that the local linear model of the system 
dynamics fJf(x,u)/fJu was available. In preliminary experiments, it was verified 
that the critic, the system model, and the actor can be trained simultaneously. 
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The actor-tutor architecture resembles "feedback error learning" (Kawato et al. , 
1987) in the sense that a nonlinear controller is trained by the output of anther 
controller. However, the actor-tutor scheme can be applied to a highly nonlinear 
control task to which it is difficult to prepare a simple linear feedback controller. 

Motivated by the performance of the actor-tutor architecture and the recent phys­
iological and fMRI experiments on the brain activity during the course of motor 
learning (Hikosaka et al., 1996; Imamizu et al., 1996), we proposed a framework of 
functional integration of the basal ganglia, the cerebellum, and cerebral motor areas 
(Doya, 1996a). In this framework, the basal ganglia learns the value function P(x) 
(Houk et al., 1994) and generates the desired motion direction based on its gradient 
oP(x)/ox. This is transformed into a motor command by the "transpose model" of 
the motor system (of (x, u)/ouf in the lateral cerebellum (cerebrocerebellum). In 
early stages of learning, this output is used for control, albeit its feedback latency 
is long. As the subject repeats the same task, a direct controller is constructed 
in the medial and intermediate cerebellum (spinocerebellum) with the above mo­
tor command as the teacher. The direct controller enables quick, near-automatic 
performance with less cognitive load in other parts of the brain. 
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