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Abstract 

We present a mixture of experts (ME) approach to interpolate sparse, 
spatially correlated earth-science data. Kriging is an interpolation 
method which uses a global covariation model estimated from the data 
to take account of the spatial dependence in the data. Based on the 
close relationship between kriging and the radial basis function (RBF) 
network (Wan & Bone, 1996), we use a mixture of generalized RBF 
networks to partition the input space into statistically correlated 
regions and learn the local covariation model of the data in each 
region. Applying the ME approach to simulated and real-world data, 
we show that it is able to achieve good partitioning of the input space, 
learn the local covariation models and improve generalization. 

1. INTRODUCTION 

Kriging is an interpolation method widely used in the earth sciences, which models the 
surface to be interpolated as a stationary random field (RF) and employs a linear model. 
The value at an unsampled location is evaluated as a weighted sum of the sparse, 
spatially correlated data points. The weights take account of the spatial correlation 
between the available data points and between the unknown points and the available data 
points. The spatial dependence is specified in the form of a global covariation model. 
Assuming global stationarity, the kriging predictor is the best unbiased linear predictor 
of the un sampled value when the true covariation model is used, in the sense that it 
minimizes the squared error variance under the unbiasedness constraint. However, in 
practice, the covariation of the data is unknown and has to be estimated from the data by 
an initial spatial data analysis. The analysis fits a covariation model to a covariation 
measure of the data such as the sample variogram or the sample covariogram, either 
graphically or by means of various least squares (LS) and maximum likelihood (ML) 
approaches. Valid covariation models are all radial basis functions. 

Optimal prediction is achieved when the true covariation model of the data is used. In 
general, prediction (or generalization) improves as the covariation model used more 
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closely matches the true covariation of the data. Nevertheless, estimating the covariation 
model from earth-science data has proved to be difficult in practice due to the sparseness 
of data samples. Furthermore for many data sets the global stationarity assumption is 
not valid. To address this, data sets are commonly manually partitioned into smaller 
regions within which the stationarity assumption is valid or approximately so. 

In a previous paper, we showed that there is a close, formal relationship between kriging 
and RBF networks (Wan & Bone, 1996). In the equivalent RBF network formulation of 
kriging, the input vector is a coordinate and the output is a scalar physical quantity of 
interest. We pointed out that, under the stationarity assumption, the radial basis function 
used in an RBF network can be viewed as a covariation model of the data. We showed 
that an RBF network whose RBF units share an adaptive norm weighting matrix, can be 
used to estimate the parameters of the postulated covariation model, outperforming more 
conventional methods. In the rest of this paper we will refer to such a generalization of 
the RBF network as a generalized RBF (GRBF) network. 

In this paper, we discuss how a mixture of GRBF networks can be used to partition the 
input space into statistically correlated regions and learn the local covariation model of 
each region. We demonstrate the effectiveness of the ME approach with a simulated 
data set and an aero-magnetic data set. Comparisons are also made of prediction 
accuracy of a single GRBF network and other more traditional RBF networks. 

2 MIXTURE OF GRBF EXPERTS 

Mixture of experts (Jacobs et al , 1991) is a modular neural network architecture in 
which a number of expert networks augmented by a gating network compete to learn the 
data. The gating network learns to assign probability to the experts according to their 
performance over various parts of the input space, and combines the outputs of the 
experts accordingly. During training, each expert is made to focus on modelling the 
local mapping it performs best, improving its performance further. Competition among 
the experts achieves a soft partitioning of the input space into regions with each expert 
network learning a separate local mapping. An hierarchical generalization of ME, the 
hierarchical mixture of experts (HME), in which each expert is allowed to expand into a 
gating network and a set of sub-experts, has also been proposed (Jordan & Jacobs, 1994). 

Under the global stationarity assumption, training a GRBF network by minimizing the 
mean squared prediction error involves adjusting its norm weighting matrix. This can 
be interpreted as an attempt to match the RBF to the covariation of the data. It then 
seems natural to use a mixture of GRBF networks when only local stationarity can be 
assumed. After training, the gating network soft partitions the input space into 
statistically correlated regions and each GRBF network provides a model of the 
covariation of the data for a local region. Instead of an ME architecture, an HME 
architecture can be used. However, to simplify the discussion we restrict ourselves to the 
ME architecture. 

Each expert in the mixture is a GRBF network. The output of expert i is given by: 

... 
Yi(X;Oi) = L Wijq,(x;cij~Mi)+ WiD 

j =\ 

(2.1) 

where ni is the number of RBF units, 0i = {{wi);~o,{cij}i=\,Md are the parameters 
of the expert and q,(x;c,M)=qX:II x-c II M). Assuming zero-mean Gaussian error and 
common variance a/, the conditional probability of y given x and ~ is given by: 

(2.3) 
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Since the radial basis functions we used bave compact support and eacb expert only 
learns a local covariation model, small GRBF networks spanning overlapping regions 
can be used to reduce computation at the expense of some resolution in locating the 
boundaries of the regions. Also, only the subset of data within and around the region 
spanned by a GRBF network is needed to train it, further reducing computational effort. 

With m experts, the i lb output of the gating network gives the probability of selecting the 
expert i and is given by the normalized function: 

g, (x~'U) = P(ilx, '0) = Il, exp(q(x~'UJ)/ ~lllj exp{q(x;'U J) (2.4) 

wbere'U = { raj::\, {'UJ::1}. Using q(x~ '0,) = 'U;[xT If and setting all a, 's to 1, the 
gating network implements the softmax function and partitions the input space into a 
smoothed planar tessellation. Alternatively, with q(x~1>i)=-IITi(X-u;)112 (wbere 
1>i={u;,Td consists of a location vector and an affine transformation matrix) and 
restricting the a/s to be non-negative, the gating network divides the input space into 
packed anisotropic ellipsoids. These two partitionings are quite convenient and adequate 
for most earth-science applications wbere x is a 2D or 3D coordinate. 

The output of the experts are combined to give the overall output of the mixture: 

III III 

Y{x~a) = L P(ilx, '\»)9i (x;a i ) = L g, (x; '0 )Yi (x;a,) (2.5) 
i=1 i=1 

wbere a = {'U, {ai }::1} and the conditional probability of observing y given x and a is: 

III 

p(ylx,a) = L P(ilx, '0 )p(ylx,a,) . (2.6) 
,=1 

3 THE TRAINING ALGORITHM 

The Expectation-Maximization (EM) algorithm of Jordan and Jacobs is used to train the 
mixture of GRBF networks. Instead of computing the ML estimates, we extend the 
algorithm by including priors on the parameters of the experts and compute the 
maximum a posteriori (MAP) estimates. Since an expert may be focusing on a small 
subset of the data, the priors belp to prevent over-fitting and improve generalization. 

Jordan & Jacobs introduced a set of indicator random variables Z = {Z<t)}~1 as missing 

data to label the experts that generate the observable data D = ((x(t), y<t»} ~1. The log 

joint probability of the complete data Dc = {D, Z} and parameters a can be written as: 

wbere A. is a set of byperparameters. Assuming separable priors on the parameters of the 

model i.e. p(alA.) = p('UIAo)D p(ail~) with A. = {~}:o' (3.1) can be rewritten as: 

N III 

In p(Dc,alA.) = L L Zi(t) In P(ilx(t) , '0)+ In P('UIAo) 
/=1 ,=1 

(3.2) 
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Since the posterior probability of the model parameters is proportional to the joint 
probability, maximizing (3.2) is equivalent to maximizing the log posterior. In the E­
step, the observed data and the current network parameters are used to compute the 
expected value of the complete-data log joint probability: 

N '" 
Q(OIO(k) ) = L L h;(k)(t)In P(ilx(I), '\))+ In p( '\)IAo) 

1=1 1=1 
(3.3) 

where (3.4) 

In the M-step, Q(OIO(k) is maximized with respect to e to obtain 0(1+1). As a result of 
the use of the indicator variables, the problem is decoupled into a separate set of interim 
MAP estimations: 

N '" 
'\)(k+1) = arg max L L hi(k)(t) In P(ilx(I), '\)) + In p( '\)IAo) 

1) 1=1 i=1 
(3.5) 

N 

O~HI) = arg lI}.ax L ~(1)(t)In P(l')lx(I),OJ+ In p(OP't) 
I 1=1 

(3.6) 

We assume a flat prior for the gating network parameters and the prior 
II; II; 

P(Oi I~) = exp(-t ~ L L WiT Wi.rq,(C iT -Ci.r» I ZR(~) where ZR(A-.) is a normalization 

constant, for the experts. This smoothness prior is used on the GRBF networks because 
it can be derived from regularization theory (Girosi & Poggio, 1990) and at the same 
time is consistent with the interpretation of the radial basis function as a covariation 
model. Hence, maximizing e i with (3.6) is equivalent to minimizing the cost function: 

where A-.' = ~(ji2. The value of the effective regularization parameter, ~', can be set by 
generalized cross validation (GCV) (Orr, 1995) or by the 'evidence' method of (Mackay, 
1991) using re-estimation formulas. However, in the simulations, for simplicity, we 
preset the value of the regularization parameter to a fixed value. 

4 SIMULATION RESULTS 

Using the Cholesky decomposition method (Cressie, 1993), we generate four 2D data 
sets using the four different covariation models shown in Figure 1. The four data set are 
then joined together to form a single 64x64 data set. Figure 3a shows the original data 
set and the hard boundaries of the 4 statistically distinct regions. We randomly sample 
the data to obtain a 400 sample training set and use the rest of the data for validation. 

Two GRBF networks, with 64 and 144 adaptive anistropic spherical! units respectively, 
are used to learn the postulated global covariation model and the mapping. A 2-level 

I The spherical model is widely used in geostatistics and when used as a covariance function is defined as 

lI'(h;a) = 1- {7(~) - t<l!)3} for ~llhll~ and rp{b;a) = 0 for Ilhll>a. Spherical does NOT mean isotropic. 
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HME with 4 GRBF network experts each with 36 spherical units are used to learn the 
local covariation models and the mapping. Softmax gating networks are used and each 
expert is somewhat 'localized' in each quadrant of the input space. The units of the 
experts are located at the same locations as the units of the 64-unit GRBF network with 
24 overlapping units between any two of the experts. The design ensures that the HME 
does not have an advantage over the 64-unit GRBF network if the data is indeed globally 
stationary. Figure 2 shows the local covariation models learned by the HME with the 
smoothness priors and Figure 3b shows the interpolant generated and the partitioning. 

(a) NW (exponential) (b) NE (spherical) (a) NW (spherical) (b) NE (spherical) 
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Figure 1: The profile of the true local Figure 2: The profile of the local 
covariation models of the simulated data set. covariation models learned by the HME. 
Exponential and spherical models are used. 
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Figure 3: (a) Simulated data set and true partitions. (b) Interpolant generated by the 144 
spherical unit GRBFN. (c) The HME interpolant and the soft partitioning learned (0.5, 
0.9 probability contours of the 4 experts shown in solid and dotted lines respectively) 

Table 1: Nonnalized mean squared prediction error for the simulated data set. 

Network RBF unit NMSE 

RBFN (isotropic RBF units with width set to the 64, Gaussian 0.761 
distance to the nearest neighbor) 144, Gaussian 0.616 

400, Gaussian 0.543 
RBFN (identical isotropic RBF units with adaptive 64, Gaussian 0.477 
width) 144, Gaussian 0.475 
GRBFN (identical RBF units with adaptive norm 64, spherical 0.506 
weiRhtinR matrix) 144, spherical 0.431 
HME (2 levels, 4 GRBFN eXlJerts) without lJriors 4x36, spherical 0.938 
HME (2 levels 4 GRBFN eXlJerts) with lJriors 4x36, spherical 0.433 
kriging predictor (usinR true local models) 0.372 

For comparison, a number of ordinary RBF networks are also used to learn the mapping. 
In all cases, the RBF units of networks of the same size share the same locations which 
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are preset by a Kohonen map. Table 1 summarizes the normalized mean squared 
prediction error (NMSE)- the squared prediction error divided by the variance of the 
validation set - for each network. With the exception of HME, all results listed are 
obtained with a smoothness prior and a regularization parameter of 0.1. Ordinary 
weight decay is used for RBF networks with units of varying widths and the smoothness 
prior discussed in section 3 are used for the remaining networks. The NMSE of the 
kriging predictor that uses the true local models is also listed as a reference. 

Similar experiments are also conducted on a real aero-magnetic data set. The flight 
paths along which the data is collected are divided into a 740 data points training set and 
a 1690 points validation set. The NMSE for each network is summarized in Table 2, the 
local covariation models learned by the HME is shown in Figure 4, and the interpolant 
generated by the HME and the partitioning is shown in Figure 5b. 

(a) NW (spherical) (b) NE (spherical) (a) (b) 
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Figure 5: (a) Thin-plate interpolant of the 
entire aero-magnetic data set. (b) The HME 
interpolant and the soft partitioning (0.5, 0.9 
probability contours of the 4 experts shown 

in solid and dotted lines respectively). 
-100 0 100 -100 0 100 

Figure 4: The profile of the local covariation models 
of the aero-magnetic data set learned by the HME. 

Table 2: Normalized mean squared prediction error for the aero-magnetic data set. 

Network RBF units NMSE 

RBFN (isotropic RBF units with width set to the 49, Gaussian 1.158 
distance to the nearest neighbor) 100, Gaussian 1.256 
RBFN (isotropic RBF units with width set to the 49, Gaussian 0.723 
mean distance to the 8 nearest neighbors) 100, Gaussian 0.699 
RBFN (identical isotropic RBF units with adaptive 49, Gaussian 0.692 
width) 100, Gaussian 0.614 
GRBFN (identical RBF units with adaptive norm 49, spherical 0.684 
weighting matrix) 100 spherical 0.612 
HME (2 levels, 4 GRBFN experts) without priors 4x25, spherical 0.389 
HME (2 levels, 4 GRBFN expertsl with priors 4x25, spherical 0.315 

5 DISCUSSION 

The ordinary RBF networks perform worst with both the simulated data and the aero­
magnetic data. As neither data set is globally stationary, the GRBF networks do not 
improve prediction accuracy over the corresponding RBF networks that use isotropic 
Gaussian units. In both cases, the hierarchical mixture of GRBF networks improves the 
prediction accuracy when the smoothness priors are used. Without the priors, the ML 
estimates of the HME parameters lead to improbably high and low predictions. 
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The improvement in prediction accuracy is more significant for the aero-magnetic data 
set than for the simulated data set due to some apparent global covariation of the 
simulated data which only becomes evident when the directional variograms of the data 
are plotted. However, despite the similar NMSE, Figure 3 shows that the interpolant 
generated by the 144-unit GRBF network does not contain the structural information 
that is captured by the HME interpolant and is most evident in the north-east region. 

In the case of the simulated data set, the HME learns the local covariation models 
accurately despite the fact that the bottom level gating networks fail to partition the input 
space precisely along the north-south direction. The availability of more data and the 
straight east-west discontinuity allows the upper gating network to partition the input 
space precisely along the east-west direction. In the north-west region, although the class 
of function the expert used is different from that of the true model, the model learned 
still resembles the true model especially in the inner region where it matters most. 

In the case of the aero-magnetic data set, the RBF and GRBF networks perform poorly 
due to the considerable extrapolation that is required in the prediction and the absence of 
global stationarity. However, the HME whose units capture the local covariation of the 
data interpolates and extrapolates significantly better. The partitioning as well as the 
local covariation model learned by the HME seems to be reasonably accurate and leads 
to the construction of prominent ridge-like structures in the north-west and south-east 
which are only apparent in the thin-plate interpolant of the entire data set of Figure Sa. 

6 CONCLUSIONS 

We show that a mixture of GRBF networks can be used to learn the local covariation of 
spatial data and improve prediction (or generalization) when the data is approximately 
locally stationary - a viable assumption in many earth-science applications. We believe 
that the improvement will be even more significant for data sets with larger spatial 
extent especially if the local regions are more statistically distinct. The estimation of the 
local covariation models of the data and the use of these models in producing the 
interpolant helps to capture the structural information in the data which, apart from 
accuracy of the prediction, is of critical importance to many earth-science applications. 

The ME approach allows the objective and automatic partitioning of the input space into 
statistically correlated regions. It also allows the use of a number of small local GRBF 
networks each trained on a subset of the data making it scaleable to large data sets. 

The mixture of GRBF networks approach is motivated by the statistical interpolation 
method of kriging. The approach therefore has a very sound physical interpretation and 
all the parameters of the network have clear statistical and/or physical meanings. 

References 
Cressie, N. A (1993). Statistics for Spatial Data. Wiley, New York. 
Jacobs, R. A, Jordan, M. I., Nowlan, S. J. & Hinton, G. E. (1991). Adaptive Mixtures of Local 

Experts. Neural Computation 3, pp. 79-87. 
Jordan, M. I. & Jacobs, R. A (1994). Hierarchical Mixtures of Experts and the EM Algorithm. 

Neural Computation 6, pp. 181-214. 
MacKay, D. J. (1992). Bayesian Interpolation. Neural Computation 4, pp. 415-447. 
Orr, M. J. (1995). Regularization in the Selection of Radial Basis Function Centers. Neural 

Computation 7, pp. 606-623. 
Poggio, T. & Girosi, F. (1990). Networks for Approximation and Learning. In Proceedings of the 

IEEE 78, pp. 1481-1497. 
Wan, E. & Bone, D. (1996). A Neural Network Approach to Covariation Model Fitting and the 

Interpolation of Sparse Earth-science Data. In Proceedings of the Seventh Australian 
Conference on Neural Networks, pp. 121-126. 


