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Abstract 

The generalization ability of a neural network can sometimes be 
improved dramatically by regularization. To analyze the improve­
ment one needs more refined results than the asymptotic distri­
bution of the weight vector. Here we study the simple case of 
one-dimensional linear regression under quadratic regularization, 
i.e., ridge regression. We study the random design, misspecified 
case, where we derive expansions for the optimal regularization pa­
rameter and the ensuing improvement. It is possible to construct 
examples where it is best to use no regularization. 

1 INTRODUCTION 

Suppose that we have available training data (Xl, Yd, .. 0' (Xn' Yn) consisting of 
pairs of vectors, and we try to predict Yi on the basis of Xi with a neural network 
with weight vector w. One popular way of selecting w is by the criterion 

(1) 
1 n - L £(Xi' Yi, w) + >..Q(w) = min!, 
n I 

where the loss £(x,y,w) is, e.g., the squared error Ily - g(x,w)11 2 , the function 
g(., w) is the input/output function of the neural network, the penalty Q(w) is 
a real function which takes on small values when the mapping g(o, w) is smooth 
and high values when it changes rapidly, and the regularization parameter >.. is a 
nonnegative scalar (which might depend on the training sample). We refer to the 
setup (1) as (training with) regularization, and to the same setup with the choice 
>.. = 0 as training without regularization. Regularization has been found to be very 
effective for improving the generalization ability of a neural network especially when 
the sample size n is of the same order of magnitude as the dimensionality of the 
parameter vector w, see, e.g., the textbooks (Bishop, 1995; Ripley, 1996). 



Asymptotic Theory for Regularization: One-Dimensional Linear Case 295 

In this paper we deal with asymptotics in the case where the architecture of the 
network is fixed but the sample size grows . To fix ideas, let us assume that the 
training data is part of an Li.d. (independent, identically distributed) sequence 
(X,Y);(Xl'Yl),(X2'Y2)"" of pairs of random vectors, i.e., for each i the pair 
(Xi, Yi) has the same distribution as the pair (X, Y) and the collection of pairs is 
independent (X and Y can be dependent) . Then we can define the (prediction) risk 
of a network with weights w as the expected value 

(2) r(w) := IE:f(X, Y, w). 

Let us denote the minimizer of (1) by Wn (.),) , and a minimizer of the risk r by 
w*. The quantity r(wn (>.)) is the average prediction error for data independent of 
the training sample. This quantity r(wn (>.)) is a random variable which describes 
the generalization performance of the network: it is bounded below by r( w*) and 
the more concentrated it is about r(w*), the better the performance . We will 
quantify this concentration by a single number, the expected value IE:r(wn(>.)) . We 
are interested in quantifying the gain (if any) in generalization for training with 
versus training without regularization defined by 

(3) 

When regularization helps, this is positive. 

However, relatively little can be said about the quantity (3) without specifying in 
detail how the regularization parameter is determined. We show in the next section 
that provided>' converges to zero sufficiently quickly (at the rate op(n-1/ 2 )), then 
IE: r(wn(O)) and IE: r(wn(>.)) are equal to leading order. It turns out, that the optimal 
regularization parameter resides in this asymptotic regime. For this reason, delicate 
analysis is required in order to get an asymptotic approximation for (3). In this 
article we derive the needed asymptotic expansions only for the simplest possible 
case: one-dimensional linear regression where the regularization parameter is chosen 
independently of the training sample. 

2 REGULARIZATION IN LINEAR REGRESSION 

We now specialize the setup (1) to the case of linear regression and a quadratic 
smoothness penalty, i.e. , we take f(x,y,w) = [y-xTwJ2 and Q(w) = wTRw, where 
now y is scalar, x and w are vectors, and R is a symmetric, positive definite matrix. 
It is well known (and easy to show) that then the minimizer of (1) is 

(4) 
1 n 1 n 

[ ]

-1 

wn (>') = ~ ~ XiX! + >'R ~ ~ XiYi. 

This is called the generalized ridge regression estimator, see, e.g., (Titterington, 
1985); ridge regression corresponds to the choice R = I, see (Hoerl and Kennard, 
1988) for a survey. Notice that (generalized) ridge regression is usually studied in 
the fixed design case, where Xi:s are nonrandom. Further, it is usually assumed 
that the model is correctly specified, i.e., that there exists a parameter such that 
Y i = Xr w* + €i , and such that the distribution of the noise term €i does not depend 
on Xi. In contrast, we study the random design, misspecified case. 

Assuming that IE: IIXI12 < 00 and that IE: [XXT] is invertible, the minimizer of the 
risk (2) and the risk itself can be written as 

(5) w* = A-lIE: [XY], with A:=IE:[XXT] 

(6) r(w) = r(w*) + (w - w*f A(w - w*). 
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If Zn is a sequence of random variables, then the notation Zn = open-a) means 
that na Zn converges to zero in probability as n -+ 00 . For this notation and the 
mathematical tools needed for the following proposition see, e.g., (Serfiing, 1980, 
Ch. 1) or (Brockwell and Davis, 1987, Ch. 6). 

Proposition 1 Suppose that IE: y4 < 00, IE: IIXII4 < 00 and that A = IE: [X XTj is in­
vertible. If,\ = op(n- I/2), then both y'n(wn(O) -w*) and y'n(wn('\) - w*) converge 
in distribution to N (0, C), a normal distribution with mean zero and covariance 
matrix C. 

The previous proposition also generalizes to the nonlinear case (under more compli­
cated conditions). Given this proposition, it follows (under certain additional con­
ditions) by Taylor expansion that both IE:r(wn('\)) - r(w*) and IEr(wn(O)) - r(w*) 
admit the expansion f31 n -} + o( n -}) with the same constant f3I. Hence, in the 
regime ,\ = op(n-I/2) we need to consider higher order expansions in order to 
compare the performance of wn(,\) and wn(O). 

3 ONE-DIMENSIONAL LINEAR REGRESSION 

We now specialize the setting of the previous section to the case where x is scalar. 
Also, from now on, we only consider the case where the regularization parameter 
for given sample size n is deterministic; especially ,\ is not allowed to depend on 
the training sample. This is necessary, since coefficients in the following type of 
asymptotic expansions depend on the details of how the regularization parameter 
is determined. The deterministic case is the easiest one to analyze. 

We develop asymptotic expansions for the criterion 

(7) 

where now the regularization parameter k is deterministic and nonnegative. The 
expansions we get turn out to be valid uniformly for k ~ O. We then develop 
asymptotic formulas for the minimizer of I n, and also for In(O) - inf I n. The last 
quantity can be interpreted as the average improvement in generalization perfor­
mance gained by optimal level of regularization, when the regularization constant 
is allowed to depend on n but not on the training sample. 

From now on we take Q(w) = w2 and assume that A = IEX2 = 1 (which could be 
arranged by a linear change of variables). Referring back to formulas in the previous 
section, we see that 

(8) r(wn(k)) - r(w*) = ern - kw*)2/(Un + 1 + k)2 =: h(Un, Vn, k), 

whence In(k) = IE:h(Un, Vn , k), where we have introduced the function h (used 
heavily in what follows) as well as the arithmetic means Un and Vn 

(9) 

(10) 

_ 1 n 

Vn:= - L Vi, with 
n I 

Vi := XiYi - w* xl 
For convenience, also define U := X2 - 1 and V := Xy - w* X2 . Notice that 
U; UI, U2 , • .. are zero mean Li.d. random variables, and that V; Vi, V2 ,. " satisfy 
the same conditions. Hence Un and Vn converge to zero, and this leads to the idea 
of using the Taylor expansion of h(u, v, k) about the point (u, v) = (0,0) in order 
to get an expansion for In(k). 
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To outline the ideas, let Tj(u,v,k) be the degree j Taylor polynomial of (u,v) f-7 

h(u, v, k) about (0,0), i.e., Tj(u, v, k) is a polynomial in u and v whose coeffi­
cients are functions of k and whose degree with respect to u and v is j. Then 
IETj(Un,Vn,k) depends on n and moments of U and V. By deriving an upper 
bound for the quantity IE Ih(Un, Vn, k) - Tj(Un, Vn, k)1 we get an upper bound for 
the error committed in approximating In(k) by IE Tj(Un, Vn, k). It turns out that 
for odd degrees j the error is of the same order of magnitude in n as for degree 
j - 1. Therefore we only consider even degrees j. It also turns out that the error 
bounds are uniform in k ~ 0 whenever j ~ 2. To proceed, we need to introduce 
assumptions. 

Assumption 1 IE IXlr < 00 and IE IYls < 00 for high enough rand s. 

Assumption 2 Either (a) for some constant j3 > 0 almost surely IXI ;::: j3 or (b) 
X has a density which is bounded in some neighborhood of zero. 

Assumption 1 guarantees the existence of high enough moments; the values r = 20 
and s = 8 are sufficient for the following proofs. E.g., if the pair (X, Y) has a 
normal distribution or a distribution with compact support, then moments of all 
orders exist and hence in this case assumption 1 would be satisfied. Without some 
condition such as assumption 2, In(O) might fail to be meaningful or finite. The 
following technical result is stated without proof. 

Proposition 2 Let p > 0 and let 0 < IE X 2 < 00. If assumption 2 holds, then 

where the expectation on the left is finite (a) for n ~ 1 (b) for n > 2p provided that 
assumption 2 (a), respectively 2 (b) holds. 

Proposition 3 Let assumptions 1 and 2 hold. Then there exist constants no and 
M such that 

In(k) = JET2(Un, Vn, k) + R(n, k) where 

_ _ (w*)2k2 -1 [IEV2 (w*)2k2JEU2 W*kIEUV] 
IET2(Un, Vn, k) = (1+k)2 +n (1+k)2 +3 (1+k)4 +4 (1+k)3 

IR(n, k) I :s; Mn- 3/2(k + 1)-1, "In;::: no, k ;::: o. 

PROOF SKETCH The formula for IE T2(Un , Vn. k) follows easily by integrating the 
degree two Taylor polynomial term by term. To get the upper bound for R(n, k), 
consider the residual 

where we have omitted four similar terms. Using the bound 
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the Ll triangle inequality, and the Cauchy-Schwartz inequality, we get 

IR(n, k)1 = IJE [h(Un, Vn, k) - T2(Un, Vn, k)]1 

., (k+ W' {Ii: [(~ ~Xl)-'] r 
{2(k + 1)3[JE (lUnI2IVnI 4 )]l/2 + 4(w*)2k2(k + 1)[18 IUnI6]l/2 ... } 

By proposition 2, here 18 [(~ 2:~ X[)-4] = 0(1). Next we use the following fact, cf. 
(Serfiing, 1980, Lemma B, p. 68). 

Fact 1 Let {Zd be i.i.d. with 18 [Zd = 0 and with 18 IZI/v < 00 for some v ~ 2. 
Then v 

Applying the Cauchy-Schwartz inequality and this fact, we get, e.g., that 

[18 (IUnI2 IVnI 4 )]l/2 ~ [(18 IUnI4 )1/2(E IVnI8)1/2p/2 = 0(n- 3/ 2). 

Going through all the terms carefully, we see that the bound holds. 

Proposition 4 Let assumptions 1 and 2 hold, assume that w* :j; 0, and set 

al := (18 V2 - 2w*E [UVD/(w*)2. 

o 

If al > 0, then there exists a constant ni such that for all n ~ nl the function 
k ~ ET2(Un, Vn,k) has a unique minimum on [0,(0) at the point k~ admitting the 
expanszon 

k~ = aIn-1 + 0(n-2); further, 

In(O) - inf{Jn(k) : k ~ O} = In(O) - In(aln- 1 ) = ar(w*)2n-2 + 0(n-5 / 2). 

If a ~ 0, then 

PROOF SKETCH The proof is based on perturbation expansio!1 c~nsidering lin a 
small parameter. By the previous proposition, Sn(k) := ET2 (Un , Vn , k) is the sum 
of (w*)2k2/(1 + k)2 and a term whose supremum over k ~ ko > -1 goes to zero 
as n ~ 00. Here the first term has a unique minimum on (-1,00) at k = O. 
Differentiating Sn we get 

S~(k) = [2(w*)2k(k + 1)2 + n-1p2(k)]/(k + 1)5, 

where P2(k) is a second degree polynomial in k. The numerator polynomial has 
three roots, one of which converges to zero as n ~ 00. A regular perturbation 
expansion for this root, k~ = aln-I + a2n-2 + ... , yields the stated formula for 
al. This point is a minimum for all sufficiently large n; further, it is greater than 
zero for all sufficiently large n if and only if al > O. 

The estimate for J n (0) - inf { J n (k) : k ~ O} in the case al > 0 follows by noticing 
that 

In(O) - In(k) = 18 [h(Un, Vn, 0) - h(Un, Vn, k)), 
where we now use a third degree Taylor expansion about (u, v, k) = (0,0,0) 

h(u,v,O) - h(u,v,k) = 

2w* kv - (w*)2k2 - 4w*kuv + 2(w*?k2u + 2kv2 - 4w*k2v + 2(W*)2k3 + r(u, v, k). 
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Figure 1: Illustration of the asymptotic approximations in the situation of equation 
(11) . Horizontal axis kj vertical axis .In(l£) and its asymptotic appr~ximations. 
Legend: markers In(k); solid line IE T2 (Un, Vn, k)j dashed line IET4 (Un, Vn, k). 

Usin~ t~e techniques of the previous proposition, it can be shown that 
IE Ir(Un , Vn , k~)1 = O(n-S/ 2 ). Integrating the Taylor polynomial and using this 
estimate gives 

In(O) - In(aI/n) = af(w*)2n-2 + O(n-S/ 2 ). 

Finally, by the mean value theorem, 

In(O) -inf{ In(k) : k ~ O} = In(O) -In(aI/n) + ! (In(O) - In(k)]lk=8(k~ -aI/n) 

= In(O) - In(aI/n) + O(n-1)O(n-2) 

where () lies between k~ and aI/n, and where we have used the fact that the indi­
cated derivative evaluated at () is of order O(n- 1 ), as can be shown with moderate 
effort. 0 

Remark In the preceding we assumed that A = IEX 2 equals 1. If this is not 
the case, then the formula for a1 has to be divided by A; again, if a1 > 0, then 
k~ = a1n-1 + O(n-2 ) . 

If the model is correctly specified in the sense that Y = w* X + E, where E is 
independent of X and IE E = 0, then V = X E and IE [UV] = O. Hence we have 
a1 = IE [E2]j(w*)2, and this is strictly positive expect in the degenerate case where 
E = 0 with probability one. This means that here regularization helps provided the 
regularization parameter is chosen around the value aI/n and n is large enough. 
See Figure 1 for an illustration in the case 

(11) X "'" N(O, 1) , Y = w* X + f , f "'" N(O, 1), w* = 1, 

where E and X are independent. In(k) is estimated on the basis of 1000 repetitions 
of the task for n = 8. In addition to IE T2(Un, Vn, k) the function IE T4 (Un, lin, k) 
is also plotted. The latter can be shown to give In(k) correctly up to order 
O(n-s/2 (k+ 1)-3). Notice that although IE T2 (Un, Vn, k) does not give that good an 
approximation for In(k), its minimizer is near the minimizer of In(k), and both of 
these minimizers lie near the point al/n = 0.125 as predicted by the theory. In the 
situation (11) it can actually be shown by lengthy calculations that the minimizer 
of In(k) is exactly al/n for each sample size n ~ 1. 

It is possible to construct cases where a1 < O. For instance, take 

X "'" Uniform (a, b), 

Y = cjX + d+ Z, 

1 1 
a=- b=-(3Vs-l) 

2 ' 4 
c= -5,d= 8, 
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and Z '" N (0, a 2 ) with Z and X independent and 0 :::; a < 1.1. In such a case 
regularization using a positive regularization parameter only makes matters worse; 
using a properly chosen negative regularization parameter would, however, help in 
this particular case. This would, however, amount to rewarding rapidly changing 
functions. In the case (11) regularization using a negative value for the regulariza­
tion parameter would be catastrophic. 

4 DISCUSSION 

We have obtained asymptotic approximations for the optimal regularization param­
eter in (1) and the amount of improvement (3) in the simple case of one-dimensional 
linear regression when the regularization parameter is chosen independently of the 
training sample. It turned out that the optimal regularization parameter is, to 
leading order, given by Qln-1 and the resulting improvement is of order O(n-2 ). 

We have also seen that if Ql < 0 then regularization only makes matters worse. 

Also (Larsen and Hansen, 1994) have obtained asymptotic results for the optimal 
regularization parameter in (1). They consider the case of a nonlinear network; 
however, they assume that the neural network model is correctly specified. 

The generalization of the present results to the nonlinear, misspecified case might 
be possible using, e.g., techniques from (Bhattacharya and Ghosh, 1978). General­
ization to the case where the regularization parameter is chosen on the basis of the 
sample (say, by cross validation) would be desirable. 
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Abstract 

A 80 x 78 pixel general purpose vision chip for spatial focal plane 
processing is presented. The size and configuration of the processing 
receptive field are programmable. The chip's architecture allows the 
photoreceptor cells to be small and densely packed by performing all 
computation on the read-out, away from the array. In addition to the 
raw intensity image, the chip outputs four processed images in parallel. 
Also presented is an application of the chip to line segment orientation 
detection, as found in the retinal receptive fields of toads. 

1 INTRODUCTION 
The front-end of the biological vision system is the retina, which is a layered structure 
responsible for image acquisition and pre-processing. The early processing is used to 
extract spatiotemporal information which helps perception and survival. This is 
accomplished with cells having feature detecting receptive fields, such as the edge 
detecting center-surround spatial receptive fields of the primate and cat bipolar cells 
[Spillmann, 1990]. In toads, the receptive fields of the retinal cells are even more 
specialized for survival by detecting ''prey'' and "predator" (from size and orientation 
filters) at this very early stage [Spi11mann, 1990]. 

The receptive of the retinal cells performs a convolution with the incident image in 
parallel and continuous time. This has inspired many engineers to develop retinomorphic 
vision systems which also imitate these parallel processing capabilities [Mead, 1989; 
Camp, 1994]. While this approach is ideal for fast early processing, it is not space 
efficient. That is, in realizing the receptive field within each pixel, considerable die area 
is required to implement the convolution kernel. In addition, should programmability be 
required, the complexity of each pixel increases drastically. The space constraints are 
eliminated if the processing is performed serially during read-out. The benefits of this 
approach are 1) each pixel can be as small as possible to allow high resolution imaging, 
2) a single processor unit is used for the entire retina thus reducing mis-match problems, 
3) programmability can be obtained with no impact on the density of imaging array, and 
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4) compact general purpose focal plane visual processing is realizable. The space 
constrains are then transfonned into temporal restrictions since the scanning clock speed 
and response time of the processing circuits must scale with the size of the array. 
Dividing the array into sub-arrays which are scanned in parallel can help this problem. 
Clearly this approach departs from the architecture of its biological counterpart, however, 
this method capitalizes on the main advantage of silicon which is its speed. This is an 
example of mixed signal neuromorphic engineering, where biological ideas are mapped 
onto silicon not using direct imitation (which has been the preferred approach in the past) 
but rather by realizing their essence with the best silicon architecture and computational 
circuits. 

This paper presents a general purpose vision chip for spatial focal plane processing. Its 
architecture allows the photoreceptor cells to be small and densely packed by performing 
all computation on the read-out, away from the array. Performing computation during 
read-out is ideal for silicon implementation since no additional temporal over-head is 
required, provided that the processing circuits are fast enough. The chip uses a single 
convolution kernel, per parallel sub-array, and the scanning bit pattern to realize various 
receptive fields. This is different from other focal plane image processors which am 
usually restricted to hardwired convolution kernels, such as oriented 20 Gabor filters 
[Camp, 1994]. In addition to the raw intensity image, the chip outputs four processed 
versions per sub-array. Also presented is an application of the chip to line segment 
orientation detection, as found in the retinal receptive fields of toads [Spillmann, 1990]. 

2 THE GENERAL PURPOSE IMAGE PROCESSING CHIP 
2.1 System Overview 

This chip has an 80 row by 78 column photocell array partitioned into four independent 
sub-arrays, which are scanned and output in parallel, (see figure I). Each block is 40 row 
by 39 column, and has its own convolution kernel and output circuit. The scanning 
circuit includes three parts: virtual ground, control signal generator (CSG), and scanning 
output transformer. Each block has its own virtual ground and scanning output 
transformer in both x direction (horizontal) and y direction (vertical). The control signal 
generator is shared among blocks. 

2.2 Hardware Implementation 

The photocell is composed of phototransistor, photo current amplifier, and output 
control. The phototransistor performance light transduction, while the amplifier 
magnifies the photocurrent by three orders of magnitude. The output control provides 
multiple copies of the amplified photocun-ent which is subsequently used for focal plane 
image processing. 

The phototransistor is a parasitic PNP transistor in an Nwell CMOS process. The 
current amplifier uses a pair of diode connected pmosfets to obtain a logarithmic 
relationship between light intensity and output current. This circuit also amplifies the 
photocurrent from nanoamperes to microamperes. The photocell sends three copies of the 
output currents into three independent buses. The connections from the photocell to the 
buses are controlled by pass transistors, as shown in Fig. 2. The three current outputs 
allow the image to be processed using mUltiple receptive field organization (convolution 
kernels), while the raw image is also output. The row (column) buses provides currents 
for extracting horizontally (vertically) oriented image features, while the original bus 
provides the logarithmically compressed intensity image. 

The scanning circuit addresses the photocell array by selecting groups of cells at one time. 
Since the output of the cells are currents, virtual ground circuits are used on each bus to 
mask the> I pF capacitance of the buses. The CSG, implemented with shift registers 
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Figure 1: Block diagram of the chip. 
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produces signals which select photocells and control the scanning output transformer. 
The scanning output transformer converts currents from all row buses into Ipe« and Icenx' 
and converts currents from all row buses into lpery and Iccny. This transformation is 
required to implement the various convolution kernels discussed later. 

The output transformer circuits are controlled by a central CSG and a peripheral CSG. 
These two generators have identical structures but different initial values. It consists of 
an n-bit shift register in x direction (horizontally) and an m-bit shift register in y direction 
(vertically). A feedback circuit is used to restore the scanning pattern into the x shift 
register after each row scan is completed. This is repeated until all the row in each block 
are scanned. 

The control signals from the peripheral and central CSGs select all the cells covered by a 
2D convolution mask (receptive field). The selected cells send Ixy to the original bus, Ixp 
to the row bus, and Iyp to the column bus. The function of the scanning output 
transformer is to identify which rows (columns) are considered as the center (Icenx or Ircny) 
or periphery (Irerx or Ipcry) of the convolution kernel, respectively. Figure 3 shows how a 
3x3 convolution kernel can be constructed. 

Figure 4 shows how the output transformer works for a 3x3 mask. Only row bus 
transformation is shown in this example, but the same mechanism applies to the column 
bus as well. The photocell array is m row by n column, and the size is 3x3. The XC (x 
center) and YC (y center) come from the central CSG; while XP (x peripheral) and YP (y 
peripheral) come from the peripheral CSG. After loading the CSG, the initial values of 
XP and YP are both 00011...1. The initial values of XC and YC are both 10 111.. .1. 
This identifies the central cell as location (2, 2). The currents from the central row 
(column) are summed to form Iren• and leeny, while all the peripheral cells are summed to 
form Iperx and lpery. This is achieved by activating the switches labeled XC, YC, XP and 
YP in figure 2. XPj (YP,) {i= I, 2, ... , n} controls whether the output current of one cell 
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Figure 2: Connections between a photo­
cell and the current buses. 
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Figure 3: Constructing a 3x3 receptive 
field . 

goes to the row (column) bus. Since XP j (YP) is connected to the gate of a pmos 
switch, a 0 in XP j (YPj) it turns on . YCj (XC j ) {i=l, 2, ... , n} controls whether a row 
(column) bus connects to Icenx bus in the same way. On the other hand, the connection 
from a row (column) bus to Ipcrx bus is controlled by an nmos and a pmos switch. The 
connection is made if and only if YC, (XCi)' an nmos switch, is 1 and YPi (XPi), a pmos 
switches, is O. The intensity image is obtained directly when XCi and YC j are both O. 
Hence, lori = 1(2,2), Icenx = lrow2= 1(2,1) + 1(2,2) + 1(2,3) and Iperx = lrowl + l row3 = 1(1,1) + 
1(1,2) + 1(1,3) + 1(3,1) + 1(3,2) + 1(3,3). 

The convolution kernel can be programmed to perform many image processing tasks by 
loading the scanning circuit with the appropriate bit pattern. This is illustrated by 
configuring the chip to perform image smoothing and edge extraction (x edge, y edge, and 
20 edge), which are all computed simultaneously on read-out. It receives five inputs (lori' 
Iccn,' lperx , Iceny, Ipcry) from the scanning circuit and produces five outputs (lori' ledge.> ledgey' 
Ismllllth,ledge2d). The kernel (receptive field) size is programmable from 3x3, 5x5, 7x7, 9x9 
and 11 x 11 . Fig. 5 shows the 3x3 masks for this processing. Repeating the above steps 
for 5x5, 7x7, 9x9, and II x 11 masks, we can get similar results. 

p.. u 
>- >-

YPI 

VCI 

c:s:l --
Yl'2 

YC2 

c:s:l c:s:l 

YP3 

YC3 

c:s:l --..... --
YPIoI 

YCN 

Figure 4: Scanning output transformer for an m row by n column photo cell array. 
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1 I 1 -I -I -I - 1 2 -I 0 -1 0 

1 1 1 2 2 2 -I 2 -I -I 4 -I 

1 1 1 -I -I -1 -I 2 -I 0 -I 0 

(a) smooth (b) edge_x (c) edge-y (d) edge_2D 
Figure 5: 3x3 convolution masks for various image processing. 

In general, the convolution results under different mask sizes can be expressed as follows: 

I~mooth=Icen. + Ire... Iedge.=Kld * Icen. -Ipc", Iedgey=Kld * Iceny-Ipcry Iedge2D=K2d *I"ri-Icen.-Iceny 
Where Kid and K2d are the programmable coefficients (from 2-6 and 6-14, respectively) for 
ID edge extraction and 2D edge extraction, respectively. By varying the locations of the 
O's in the scanning circuits, different types of receptive fields (convolution kernels) can be 
realized. 

2.3 Results 

The chip contains 65K transistors in a footprint of 4.6 mm x 4.7 mm. There are 80 x 78 
photocells in the chip, each of which is 45.6 11m x 45 !lm and a fill factor of 15%. The 
convolution kernel occupies 690.6 !lm x 102.6 11m. The power consumption of the chip 
for a 3x3 (1\ x 11) receptive field, indoor light, and 5V power supply is < 2 m W (8 m W). 

To capitalize on the programmability of this chip, an ND card in a Pentium 133MHz PC 
is used to load the scanning circuit and to collect data. The card, which has a maximum 
analog throughput of 100KHz limits the frame rate of the chip to 12 frames per second. 
At this rate, five processed versions of the image is collected and displayed. The scanning 
and processing circuits can operate at 10 MHz (6250 fps), however, the phototransistors 
have much slower dynamics. Temporal smoothing (smear) can be observed on the scope 
when the frame rate exceeds 100 fps. 

The chip displays a logarithmic relationship between light intensity and output current 
(unprocessed imaged) from 0.1 lux (100 nA) to 6000 lux (10 IlA). The fixed pattern 
noise, defined as standard-deviation/mean, decreases abruptly from 25% in the dark to 2% 
at room light (800 lux). This behavior is expected since the variation of individual pixel 
current is large compared to the mean output when the mean is small. The logarithmic 
response of the photocell results in high sensitivity at low light, thus increasing the 
mean value sharply. Little variation is observed between chips. 

The contrast sensitivity of the edge detection masks is also measured for the 3x3 and 5x5 
receptive fields. Here contrast is defined as (1m .. - Imin)/(Im .. + Imin) and sensitivity is given 
as a percentage of the maximum output. The measurements are performed for normal 
room and bright lighting conditions. Since the two conditions corresponded to the 
saturated part of the logarithmic transfer function of the photocells, then a linear 
relationship between output response and contrast is expected. Figure 6 shows contrast 
sensitivity plot. Figure 7 shows examples of chip's outputs. The top two images are the 
raw and smoothed (5x5) images. The bottom two are the 1 D edge_x (left) and 2D edge 
(right) images. The pixels with positive values have been thresholded to white. The 
vertical black line in the image is not visible in the edge_x image, but can be clearly seen 
in the edge_2D image. 
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Figure 6: Contrast sensitivity function of 
the x edge detection mask. 

R. Etienne-Cummings and D. Cai 

Figure 7: (Clockwise) Raw image. 5x5 
smoothed image. edge_2D and edge_x. 

3 APPLICATION: ORIENTATION DETECTION 
3.1 Algorithm Overview 

This vision chip can be elegantly used to measure the orientation of line segments which 
fall across the receptive field of each pixel. The output of the 10 Laplacian operators, 
edge_x and edge_y, shown in figure 5, can be used to detennine the orientation of edge 
segments. Consider a continuous line through the origin, represented by a delta function 
in 20 space by IX y-xtan()). If the origin is the center of the receptive field. the response 
ofthe edge_x kernel can be computed by evaluating the convolution equation (1). where 
W(x) = u(x+m)-u(x-m) is the x window over which smoothing is performed, 2m+ J is the 
width of the window and 2n+ J is the number of coefficients realizing the discrete 
Laplacian operator. In our case, n = m. Evaluating this equation and substituting the 
origin for the pixel location yields equation (2), which indicates that the output of the 10 
edge_x (edge-y) detectors have a discretized linear relationship to orientation from on to 
45" (45° to 90°). At 0", the second term in equation (2) is zero. As e increase, more 
terms are subtracted until all tenns are subtracted at 45°. Above 45 0 (below 45°), the 
edge_x (edge-y) detectors output zero since equal numbers of positive and negative 
coefficients are summed. Provided that contrast can be nonnalized. the output of the 
detectors can be used to extract the orientation of the line. Clearly these responses are 
even about the x- and y-axis. respectively. Hence, a second pair of edge detectors. oriented 
at 45", is required to uniquely extract the angle of the line segment. 
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Figure 8: Measured orientation transfer function of edge_x detectors. 
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3.2 Results 

Figure 8 shows the measured output of the edge_x detectors for various lighting 
conditions as a line is rotated. The average positive outputs are plotted. As expected, the 
output is maximum for bright ambients when the line is horizontal. As the line is 
rotated, the output current decreases linearly and levels off at approximately 45". On the 
other hand, the edge_y (not shown) begins its linear increase at 45" and maximizes at 90°. 
After normalizing for brightness. the four curves are very similar (not shown). 

To further demonstrate orientation detection with this chip, a character consisting of a 
circle and some straight lines is presented. The intensity image of the character is shown 
in figure 9(a). Figures 9(b) and 9(c) show the outputs of the edge_x and edge-y 
detectors, respectively. Since a 7x7 receptive field is used in this experiment, some outer 
pixels of each block are lost. The orientation selectivity of the 1 D edge detectors are 
clearly visible in the figures , where edge_x highlights horizontal edges and edge_y vertical 
edges. Figure 9(d) shows the reported angles. A program is written which takes the two 
I D edge images, finds the location of the edges from the edge_2D image, the intensity at 
the edges (positive lobe) and then computes the angle of the edge segment. In figure 9(d), 
the black background is chosen for locations where no edges are detected, white is used for 
0° and gray for 90°. 

(a) (b) (c) (d) 

Figure 9: Orientation detection using ID Laplacian Operators. 

4 CONCLUSION 
A 80x78 pixel general purpose vision chip for spatial focal plane processing has been 
presented. The size and configuration of the processing receptive field are programmable. 
In addition to the raw intensity image, the chip outputs four processed images in parallel. 
The chip has been successfully used for compact line segment orientation detection, 
which can be used in character recognition. The programmability and relatively low 
power consumption makes it ideal for many visual processing tasks. 
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