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Abstract

This paper is concerned with the problem of Reinforcement Learn-
ing (RL) for continuous state space and time stochastic control
problems. We state the Hamilton-Jacobi-Bellman equation satis-
fied by the value function and use a Finite-Difference method for
designing a convergent approximation scheme. Then we propose a
RL algorithm based on this scheme and prove its convergence to
the optimal solution.

1 Introduction to RL in the continuous, stochastic case

The objective of RL is to find -thanks to a reinforcement signal- an optimal strategy
for solving a dynamical control problem. Here we sudy the continuous time, con-
tinuous state-space stochastic case, which covers a wide variety of control problems
including target, viability, optimization problems (see [FS93], [KP95]) for which a
formalism is the following. The evolution of the current state z(t) € O (the state-
space, with O open subset of IR?), depends on the control u(t) € U (compact subset)
by a stochastic differential equation, called the state dynamics:

dz = f(z(t),u(t))dt + o(z(t), u(t))dw (1)
where f is the local drift and ¢.dw (with w a brownian motion of dimension r and

o a d x r-matrix) the stochastic part (which appears for several reasons such as lake
of precision, noisy influence, random fluctuations) of the diffusion process.

For initial state z and control u(t), (1) leads to an infinity of possible trajectories
z(t). For some trajectory z(t) (see figure 1), let 7 be its ezit time from O (with
the convention that if z(t) always stays in O, then 7 = oc). Then, we define the
functional J of initial state z and control u(.) as the expectation for all trajectories
of the discounted cumulative reinforcement :

J(z5u()) = Eaugy { / " tr(a(t), u(t))de +7*R(z(r>)}
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where r(z,u) is the running reinforcement and R(z) the boundary reinforcement.
7 is the discount factor (0 < v < 1). In the following, we assume that f,o are of
class C?, r and R are Lipschitzian (with constants L, and Lg) and the boundary
90 is C°.

L] L] L] L] L]

Figure 1: The state space, the discretized °(the square dots) and its frontier %%
(the round ones). A trajectory z(t) goes through the neighbourhood of state &.

RL uses the method of Dynamic Programiming (DP) which generates an optimal
(feed-back) control u*(z) by estimating the walue function (VF), defined as the
maximal value of the functional J as a function of initial state z :

V(z)= e J(z5u(.))- (2)

In the RL approach, the state dynamics is unknown from the system ; the only
available information for learning the optimal control is the reinforcement obtained
at the current state. Here we propose a model-based algorithm, i.e. that learns
on-line a model of the dynamics and approximates the value function by successive
iterations.

Section 2 states the Hamilton-Jacobi-Bellman equation and use a Finite-Difference
(FD) method derived from Kushner [Kus90] for generating a convergent approxi-
mation scheme. In section 3, we propose a RL algorithm based on this scheme and
prove its convergence to the VF in appendiz A.

2 A Finite Difference scheme

Here, we state a second-order nonlinear differential equation (obtained from the DP
principle, see [FS93]) satisfied by the value function, called the Hamilton-Jacobi-
Bellman equation.

Let the d x d matrix a = 0.0’ (with ’ the transpose of the matrix). We consider
the uniformly parabolic case, i.e. we assume that there exists ¢ > 0 such that

Vz € O,Yue U,y e RLY . aii(z, u)yiy; > clly||>. Then V is C* (see [Kry80)).

1,J=1
Let V, be the gradient of V and V,,,, its second-order partial derivatives.

Theorem 1 (Hamilton-Jacobi-Bellman) The following HJB equation holds :
V(z)Invy + sup {r(m,u) + Va(2).f(z,u) + % Z':FI i Vg (:r:)] =0forzeO
uelU ’

Besides, V satisfies the following boundary condition : V(z) = R(z) for z € 80.
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Remark 1 The challenge of learning the VF is motivated by the fact that from V,
we can deduce the following optimal feed-back control policy :

u*(z) € arg 21618 [r(m,u) + Va(z).f(z,u) + % E?,j:l i Veix; (:r)]

In the following, we assume that O is bounded. Let ey, ...,eq be a basis for IR9.
Let the positive and negative parts of a function ¢ be : ¢* = max(¢,0) and
¢~ = max(—¢,0). For any discretization step 6, let us consider the lattices : §Z¢ =

{6.Ef=lj‘re,-} where j1, ..., ja are any integers, and £° = §Z% N O. Let %%, the
frontier of % denote the set of points {£ € §Z¢\ O such that at least one adjacent
point £ + fe; € 5} (see figure 1).

Let U® C U be a finite control set that approximates U in the sense: § < §' =
U¥ c U® and UsUS = U. Besides, we assume that: Vi = 1..d,

a,-,-(a:,u) - Zj;éi 'a!'j (m’u)l 2 0. (3)
By replacing the gradient V,(£) by the forward and backward first-order finite-

difference quotients: AL V(£) = } [V(€ £ be;) — V(€)] and Vi, (€) by the second-
order finite-difference quotients:

AL, V() = zh[V(E+ e+ be;) + V(€ — be; F be;)
=V (& + be;) — V(£ — bes) — V(£ + be;j) — V(£ — be;) + 2V (£))]

in the HJB equation, we obtain the following : for £ € &%,
V(&) lny +supueps {r(6,u) + Doty [£ (6, w)-ALVAE) - 7 (6 w)-AZV(€)

v -z, vio)|} -0

1

t(&u
+&(§i‘l&miz‘_]f(£) o Z_f;éi (Eu%ilAI.z

Knowing that (At In ) is an approximation of (y2*—1) as At tends to 0, we deduce:

Vi) = supuern Y€ Teen pE W OVEQ) + 7€ wir(E w)] (@

with 7(€,u) = =a o (5)
Z.‘-:] [6”-: (&u)|+ai(€u)- 2 Zj#;la'li (E!u)}]

which appears as a DP equation for some finite Markovian Decision Process (see
[Ber87]) whose state space is £° and probabilities of transition :

ple u = be) = T (2676, )l + ais(6,w) — Ty losi (6, 0]

P(E,u, &+ be; £ bej) = TE5ad(€,u) for i # j, (6)
p(§,u,& — be; & be;) = %%‘ﬂafj(f,u) for i # 3,
p(§,u,{) = O otherwise.

Thanks to a contraction property due to the discount factor -, there exists a unique
solution (the fixed-point) V* to equation (4) for £ € £° with the boundary condition
V4(€) = R(€) for £ € 0%, The following theorem (see [Kus90] or [FS93]) insures
that V9 is a convergent approximation scheme.
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Theorem 2 (Convergence of the FD scheme) V? convergestoV as§ 10 :
lim ,,0 V(€) = V(z) uniformly on O
E—ax

Remark 2 Condition (3) insures that the p(€,u,() are positive. If this condition
does not hold, several possibilities to overcome this are described in [Kus90].

3 The reinforcement learning algorithm

Here we assume that f is bounded from below. As the state dynamics (f and a)

is unknown from the system, we approximate it by building a model f and a from
samples of trajectories zj(t) : we consider series of successive states zp = zi(tx)
and yx = zx(tk + Tk) such that:

-Vt € [te,tk +Tk], z(t) € N(§) neighbourhood of £ whose diameter is inferior to
kn .6 for some positive constant kp,

- the control u is constant for t € [tk, tx + Tk,

- T} satisfies for some positive k; and ko,

k16 < 1 < kod. (7

Then incrementally update the model :

falu) = %Zzﬂw

Tk

aeu) = 13 (yk_xk_”'f"(&’“))rgyk”‘“‘Tk-fn(f,u)) ®)

MEu) = :¥kar(@ry)
and compute the approximated time 7(z,u) Ei_nd the approximated probabilities of
transition p(,u, () by replacing f and a by f and @ in (5) and (6).
We obtain the following updating rule of the V%-value of state ¢:

Via() = supucys [ Tl w OV +F@ w6 )] (9)

which can be used as an off-line (synchronous, Gauss-Seidel, asynchronous) or on-
time (for example by updating V;(€) as soon as a trajectory exits from the neigh-
bourood of £) DP algorithm (see (BBS95]).

Besides, when a trajectory hits the boundary O at some exit point z;(7) then
update the closest state £ € 9X° with:

Vaa (€) = R(zx(7)) (10)

Theorem 3 (Convergence of the algorithm) Suppose that the model as well
as the Vi-value of every state £ € £° and control u € U® are regularly updated
(respectively with (8) and (9)) and that every state £ € 8% are updated with (10)
at least once. Then Ve > 0, 3A such that V6 < A, 3N,Vn > N,

supeess |V (€) = V()| < € with probability 1
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4 Conclusion

This paper presents a model-based RL algorithm for continuous stochastic control
problems. A model of the dynamics is approximated by the mean and the covariance
of successive states. Then, a RL updating rule based on a convergent FD scheme is
deduced and in the hypothesis of an adequate exploration, the convergence to the
optimal solution is proved as the discretization step 6 tends to 0 and the number
of iteration tends to infinity. This result is to be compared to the model-free RL
algorithm for the deterministic case in [Mun97]. An interesting possible future
work should be to consider model-free algorithms in the stochastic case for which a
Q-learning rule (see [Wat89]) could be relevant.

A Appendix: proof of the convergence

Let My, M,, My, and M, be the upper bounds of f,a, f. and o, and m; the lower
bound of f. Let E% = supgexs |[V(€) — V(€)| and Ef = supexs |V (€) — VE()) .

A.1 Estimation error of the model }: and a, and the probabilities p,

Suppose that the trajectory z(t) occured for some occurence wy(t) of the brownian
motion: zy(t) = =k + f:k f(zk(t), u)dt + f:k o(zk(t), u)dwi. Then we consider a
trajectory zk(t) starting from .f at ¢ and following the same brownian motion:
2z (t) =€+ ft f(2e(t), w)dt + L o (zk(t), u)dwg.
Let 2 = zi(tk +7k). Then (yx — zx) — (2 — &) = [, [f(zr(t),w) — f(2k(t),w)] dt +
_[;1“'”* [o(zk(t), u) — o(2k(t), w)] dwy. Thus, from the C' property of f and o,

(e — zx) = (26 = ) < (My, + Mo, ).kn.Tg.6. (11)
The diffusion processes has the following property gee for example the Ité-Taylor
majoration in [KP95]) : E; [2x] = &+Tk-f(€,u)+O(7%) which, from (7), is equivalent
to: E, [ﬂ;g] = f(&,u) + O(6). Thus from the law of large numbers and (11):
Fal,u) — f(&,u)“ == ].imsup“% ¥ k=1 [m‘ff& - 5‘;—:5] || + 0(6)

n—0o0

= (My, + M,,).kn.6 +O(6) = O(6) w.p. 1(12)

n—0oo

Besides, diffusion processes have the following property (again see [KP95])
Ee [(z — &) (e — &)'] = a6, Wi + f(&w).f(€,w)' 7% + O(r}) which, from (7),
is equivalent to: E, [(“‘f—”f (o)) (ze —E—7e () ] = a(£,u) + O(6%). Let rp =

zp—€E—Tef(§u) and e =y — Tk — ﬂ]’:(&&) which satisfy (from (11) and (12)) :
lre — 7|l = (My, + Mg, ). Tk kN .6 + T.O() (13)

From the definition of a,(£,u), we have: a,(§,u) —a(é,u) = 5 Ly ?r?" _

E, [” Tk ] + O(6?) and from the law of large numbers, (12) a.nd (13), we have:

limsup  |@(€,u) — a(6, )| = limsup |2 377, Bz

Tn— 00

+0(6%)

zl) +0(8%) = 0(s?)

= I7% — 7l llmsup Z (

N— 00
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with probability 1. Thus there exists kf and kq s.t. 3A1,V§ < Ay,3INy,n > Ny,

[Frtev = )| <y 8 w1 1)
lan(€,u) —a(éu)ll < ka.6” w.p. 1
Besides, from (5) and (14), we have:

(6, u) = (6, u)| < SELEEELE) 52 < kg2 (15)
and from a property of exponential function,
ﬁrT(El“) — 7?"(531‘)

=k,.In1.6% (16)
We can deduce from (14) that:

==3 2
limsup |p(€,u,¢) = Pa(6,u,¢)| < BFLEIRHEGRE <lpbwp 1 (17)

with kp = 4(d.Mo)(2.ks + d.ka) for § < Az = min { %, 8- }.

A.2 Estimation of |V, ,(£) — V5(¢)|

After having updated V?’(¢) with rule (9), let A denote the difference
[Vas1(6) = V2(€)]. From (4), (9) and (8),

A< TEITIpE 0 - FHEwOI VIO + (77t6m) — i) S5 1OV
4T &), ; (€, u,Q) [V3(Q) - V()] + ;5(5, u, ()7 (6, u) [r(€,w) — (&, u)]
+ T B6,u, ) [F(€,w) = 7(€,u)] (€, w) for all u € U

As V is differentiable we have : V({) = V(£) + Vz.(¢ — &) + o(|| — £]|). Let
us define a linear function V such that: V(z) = V(§) + Vi.(z —€). Then
we have: [p(€,u,€) —P(§,u, QIV*(Q) = [p(§u,¢) = P(&w, Q). [V2(O) - V()] +
[})(£$ U, C) _ﬁ(EiuJC)} V(C)! thus: Z{: [p(€1u$c) —§(£$u1 C)] VE(C) = kP'E5‘6 5

S lp(6u,Q) - 76,01 [T +0(6)] = [P = V@] + kpB58 + o(8) =
[P — V(@) + 0(8) with: 1 = X p(6,1,0) (¢ — €) and 7 = T H(E, u,€) (¢ ~ €).
Besides, from the convergence of the scheme (theorem 2), we have E%.§ =
0(6). From the linearity of V, lff(c)_i'r(&)| < ”c—E” My, < 2k,6%. Thus

|Ec [p(€, 4, ¢) — B(E, u, )] Vﬁ(g), = o(6) and from (15), (16) and the Lipschitz prop-
erty of r,

A= |y 5 5(E,u,0) [VE(Q) - V]| + 0(6)-
As ‘Y‘T—(E'u) S 1—'?.‘({2"‘“)']11% S l—w)é‘-ﬂln% S 1- (m—%‘&z)lﬂ%,
we have:
A= (1-Fkb)ES + o(6) (18)
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A.3 A sufficient condition for supscss |V (£) — VE(€)| < &2

Let us suppose that for all £ € 2%, the following conditions hold for some a > 0
E, > e2= Vi) -V <Ei-a (19)
E, < e=|Via@)-V@|<e (20)
From the hypothesis that all states £ € £° are regularly updated, there exists an
integer m such that at stage n + m all the £ € £% have been updated at least
once since stage n. Besides, since all £ € OG® are updated at least once with
rule (10), V€ € 8G%,|V5(¢) — V¥(€)| = |R(zk(7)) — R(€)| < 2.Lg.6 < &y for any
6 < Ag = 7. Thus, from (19) and (20) we have:
Efl > 82=>E3+mSEfl—a
El < easE, ,<e
Thus there exists N such that : Vn > N, E® < ¢,.

A.4 Convergence of the algorithm

Let us prove theorem 3. For any € > 0, let us consider €; > 0 and g5 > 0 such that
€1+¢€3 = €. Assume EY > ¢, then from (18), A = ES — k.6.c5+0(6) < E§ —k.6.2
for 6§ < As. Thus (19) holds for o = k.6.% . Suppose now that E? < &5. From (18),
A< (1—k.b)ez +0(8) < eq for § < Az and condition (20) is true.

Thus for § < min{A1, Ay, A3}, the sufficient conditions (19) and (20) are satisfied.
So there exists NV, for all n > N, Ef; < £9. Besides, from the convergence of the
scheme (theorem 2), there exists Ag st. V6 < Ag, supgeys [VA(€) — V(€)| < &1

Thus for § < min{Ag, Ay, As, A3}, 3N, Vn > N,
sup |V2(€) — V(€)| < sup [V2(&) — V()| + sup [V2(E) - V()| <er +er =e.
tex’ texe texs
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