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Abstract 

We apply a general algorithm for merging prediction strategies (the 
Aggregating Algorithm) to the problem of linear regression with the 
square loss; our main assumption is that the response variable is 
bounded. It turns out that for this particular problem the Aggre­
gating Algorithm resembles, but is slightly different from, the well­
known ridge estimation procedure. From general results about the 
Aggregating Algorithm we deduce a guaranteed bound on the dif­
ference between our algorithm's performance and the best, in some 
sense, linear regression function's performance. We show that the 
AA attains the optimal constant in our bound, whereas the con­
stant attained by the ridge regression procedure in general can be 
4 times worse. 

1 INTRODUCTION 

The usual approach to regression problems is to assume that the data are gen­
erated by some stochastic mechanism and make some, typically very restrictive, 
assumptions about that stochastic mechanism. In recent years, however, a different 
approach to this kind of problems was developed (see, e.g., DeSantis et al. [2], Lit­
tlestone and Warmuth [7]): in our context, that approach sets the goal of finding 
an on-line algorithm that performs not much worse than the best regression func­
tion found off-line; in other words, it replaces the usual statistical analyses by the 
competitive analysis of on-line algorithms. 

DeSantis et al. [2] performed a competitive analysis of the Bayesian merging scheme 
for the log-loss prediction game; later Littlestone and Warmuth [7] and Vovk [10] 
introduced an on-line algorithm (called the Weighted Majority Algorithm by the 
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former authors) for the simple binary prediction game. These two algorithms (the 
Bayesian merging scheme and the Weighted Majority Algorithm) are special cases 
of the Aggregating Algorithm (AA) proposed in [9, 11]. The AA is a member of 
a wide family of algorithms called "multiplicative weight" or "exponential weight" 
algorithms. 

Closer to the topic of this paper, Cesa-Bianchi et al. [1) performed a competitive 
analysis, under the square loss, of the standard Gradient Descent Algorithm and 
Kivinen and Warmuth [6] complemented it by a competitive analysis of a modi­
fication of the Gradient Descent, which they call the Exponentiated Gradient Al­
gorithm. The bounds obtained in [1, 6] are of the following type: at every trial 
T, 

(1) 

where LT is the loss (over the first T trials) of the on-line algorithm, LT is the 
loss of the best (by trial T) linear regression function, and c is a constant, c > 
1; specifically, c = 2 for the Gradient Descent and c = 3 for the Exponentiated 
Gradient. These bounds hold under the following assumptions: for the Gradient 
Descent, it is assumed that the L2 norm of the weights and of all data items are 
bounded by constant 1; for the Exponentiated Gradient, that the Ll norm of the 
weights and the Loo norm of all data items are bounded by 1. 

In many interesting cases bound (1) is weak. For example, suppose that our com­
parison class contains a "true" regression function, but its values are corrupted by 
an Li.d. noise. Then, under reasonable assumptions about the noise, LT will grow 
linearly in T, and inequality (1) will only bound the difference LT - LT by a lin­
ear function of T. (Though in other situations bound (1) can be better than our 
bound (2), see below. For example, in the case of the Exponentiated Gradient, the 
0(1) in (1) depends on the number of parameters n logarithmically whereas our 
bound depends on n linearly.) 

In this paper we will apply the AA to the problem of linear regression. The AA 
has been proven to be optimal in some simple cases [5, 11], so we can also expect 
good performance in the problem of linear regression. The following is a typical 
result that can be obtained using the AA: Learner has a strategy which ensures 
that always 

LT ~ LT + nIn(T + 1) + 1 (2) 

(n is the number of predictor variables). It is interesting that the assumptions 
for the last inequality are weaker than those for both the Gradient Descent and 
Exponentiated Gradient: we only assume that the L2 norm of the weights and the 
Loo norm of all data items are bounded by constant 1 (these assumptions will be 
further relaxed later on). The norms L2 and Loo are not dual, which casts doubt 
on the accepted intuition that the weights and data items should be measured by 
dual norms (such as Ll-Loo or L2-L2). 

Notice that the logarithmic term nln(T + 1) of (2) is similar to the term ~ In T 
occurring in the analysis of the log-loss game and its generalizations, in particular 
in Wallace's theory of minimum message length, Rissanen's theory of stochastic 
complexity, minimax regret analysis. In the case n = 1 and Xt = 1, Vt, inequality (2) 
differs from Freund's [4] Theorem 4 only in the additive constant. In this paper 
we will see another manifestation of a phenomenon noticed by Freund [4]: for some 
important problems, the adversarial bounds of on-line competitive learning theory 
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are only a tiny amount worse than the average-case bounds for some stochastic 
strategies for Nature. 

A weaker variant of inequality (2) can be deduced from Foster's [3] Theorem 1 (if 
we additionally assume that the response variable take only two values, -1 or 1): 
Foster's result implies 

LT ~ LT + 8n In(2n(T + 1)) + 8 

(a multiple of 4 arises from replacing Foster's set {O, 1} of possible values of the 
response variable by our {-1, 1}j we also replaced Foster's d by 2n: to span our set 
of possible weights we need 2n Foster's predictors). 

Inequality (2) is also similar to Yamanishi's [12] resultj in that paper, he considers a 
more general framework than ours but does not attempt to find optimal constants. 

2 ALGORITHM 

We consider the following protocol of interaction between Learner and Nature: 

FOR t = 1,2, ... 
Nature chooses Xt € m.n 

Learner chooses prediction Pt E m. 
Nature chooses Yt E [-Y, Y] 

END FOR. 

This is a "perfect-information" protocol: either player can see the other player's 
moves. The parameters of our protocol are: a fixed positive number n (the dimen­
sionality of our regression problem) and an upper bound Y > 0 on the value Yt 
returned by Nature. It is important, however, that our algorithm for playing this 
game (on the part of Learner) does not need to know Y. 

We will only give a description of our regression algorithmj its derivation from the 
general AA will be given in the future full version of this paper. (It is usually a non­
trivial task to represent the AA in a computationally efficient form, and the case of 
on-line linear regression is not an exception.) Fix n and a > O. The algorithm is as 
follows: 

A :=alj b:=O 
FOR TRlAL t = 1,2, ... : 

read new Xt E m.n 

A:= A +XtX~ 
output prediction Pt := b' A -1 Xt 
read new Yt E m. 
b:= b+YtXt 

END FOR. 

In this description, A is an n x n matrix (which is always symmetrical and positive 
definite), bE mn , I is the unit n x n matrix, and 0 is the all-O vector. 

The naive implementation of this algorithm would require O(n3) arithmetic oper­
ations at every trial, but the standard recursive technique allows us to spend only 
O(n2 ) arithmetic operations per trial. This is still not as good as for the Gradient 
Descent Algorithm and Exponentiated Gradient Algorithm (they require only O(n) 
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operations per trial); we seem to have a trade-off between the quality of bounds 
on predictive performance and computational efficiency. In the rest of the paper 
"AA" will mean the algorithm. described in the previous paragraph (which is the 
Aggregating Algorithm applied to a particular uncountable pool of experts with a 
particular Gaussian prior). 

3 BOUNDS 

In this section we state, without proof, results describing the predictive performance 
of our algorithm. Our comparison class consists of the linear functions Yt = W· Xt, 
where W E m.n • We will call the possible weights w "experts" (imagine that we 
have continuously many experts indexed by W E m.n ; Expert w always recommends 
prediction w . Xt to Learner). At every trial t Expert w and Learner suffer loss 
(Yt - w . Xt)2 and (Yt - Pt)2, respectively. Our notation for the total loss suffered by 
Expert w and Learner over the first T trials will be 

and 

respectively. 

T 

LT(W) := L(Yt - W· Xt)2 
t=1 

T 

LT(Learner) := L(Yt - Pt)2, 
t=1 

For compact pools of experts (which, in our setting, corresponds to the set of 
possible weights w being bounded and closed) it is usually possible to derive bounds 
(such as (2» where the learner's loss is compared to the best expert's loss. In our 
case of non-compact pool, however, we need to give the learner a start on remote 
experts. Specifically, instead of comparing Learner's performance to infw LT(W), 
we compare it to infw (LT(W) + allwlI2 ) (thus giving ~arner a start of allwII2 on 
Expert w), where a > 0 is a constant reflecting our prior expectations about the 
"complexity" IIwll := -IE:=1 w; of successful experts. 

This idea of giving a start to experts allows us to prove stronger results; e.g., the 
following elaboration of (2) holds: 

(3) 

(this inequality still assumes that IIXtiloo ~ 1 for all t but w is unbounded). 

Our notation for the transpose of matrix A will be A'; as usual, vectors are identified 
with one-column matrices. 

Theorem 1 For any fi:ted n, Leamer has a strategy which ensures that always 



368 V. Vovk 

II, in addition, IIxt II 00 $ X, \It, 

(4) 

The last inequality of this theorem implies inequality (3): it suffices to put X = 
Y=a=1. 

The term 

lndet (1 +; t,x.x:) 
in Theorem 1 might be difficult to interpret. Notice that it can be rewritten as 

nlnT + lndet (~I + ~COV(Xl' ... ,Xn)) , 

where cov(Xl , ... , Xn) is the empirical covariance matrix of the predictor variables 
(in other words, cov(Xl , ... ,Xn) is the covariance matrix of the random vector 
which takes the values Xl, ... ,XT with equal probability ~). We can see that this 
term is typically close to n In T. 

Using standard transformations, it is easy to deduce from Theorem 1, e.g., the 
following results (for simplicity we assume n = 1 and Xt,Yt E [-1,1], 'It): 

• if the pool of experts consists of all polynomials of degree d, Learner has a 
strategy guaranteeing 

• if the pool of experts consists of all splines of degree d with k nodes (chosen 
a priori), Learner has a strategy guaranteeing 

LT(Learner) S inf (LT(W) + Ilw1l 2 ) + (d + k + 1) In(T + 1). 
w 

The following theorem shows that the constant n in inequality (4) cannot be im­
proved. 

Theorem 2 Fix n (the number 01 attributes) and Y (the upper bound on IlItl). For 
any f > 0 there exist a constant C and a stochastic strategy lor Nature such that 
IIxtiloo = 1 and Illtl = Y, lor all t, and, lor any stochastic strategy lor Learner, 

E (LT(Learner) - inf LT(W)) ~ (n - f)y21nT - C, 'IT. 
w:llwll:SY 

4 COMPARISONS 

It is easy to see that the ridge regression procedure sometimes gives results that 
are not sensible in our framework where lit E [-Y, Y] and the goal is to compete 
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against the best linear regression function. For example, suppose n = 1, Y = 1, 
and Nature generates outcomes (Xt, Yt), t = 1,2, ... , where 

_ { 1, if todd, 
a « Xl « X2 « ... , Yt - -1, if t even. 

At trial t = 2,3, ... the ridge regression procedure (more accurately, its natural 
modification which truncates its predictions to [-1, 1]) will give prediction Pt = Yt-l 
equal to the previous response, and so will suffer a loss of about 4T over T trials. 
On the other hand, the AA's prediction will be close to 0, and so the cumulative 
loss of the AA over the first T trials will be about T, which is close to the best 
expert's loss. We can see that the ridge regression procedure in this situation is 
forced to suffer a loss 4 times as big as the AA's loss. 

The lower bound stated in Theorem 2 does not imply that our regression algorithm is 
better than the ridge regression procedure in our adversarial framework. (Moreover, 
the idea of our proof of Theorem 2 is to lower bound the performance of the ridge 
regression procedure in the situation where the expected loss of the ridge regression 
procedure is optimal.) Theorem 1 asserts that 

LT(Leamer) :S ~ (LT( w) + allwl12) + y2 t. In ( 1 + ~ t. X~.i) (5) 

when Learner follows the AA. The next theorem shows that the ridge regression 
procedure sometimes violates this inequality. 

Theorem 3 Let n = 1 (the number 0/ attributes) and Y = 1 (the upper bound 
on IYtl); fix a > O. Nature has a strategy such that, when Learner plays the ridge 
regression strategy, 

LT(Learner) = 4T + 0(1), 

inf (LT(w) + allwll2) = T + 0(1), 
UI 

In (1+ ~ t.x~) = TIn2+ 0(1) 

as T -4 00 (and, there/ore, (5) is violated). 

5 CONCLUSION 

(6) 

(7) 

(8) 

A distinctive feature of our approach to linear regression is that our only assump­
tion about the data is that IYt I ~ Y, 'tit; we do not make any assumptions about 
stochastic properties of the data-generating mechanism. In some situations (if the 
data were generated by a partially known stochastic mechanism) this feature is a 
disadvantage, but often it will be an advantage. 

This paper was greatly influenced by Vapnik's [8] idea of transductive inference. 
The algorithm analyzed in this paper is "transductive", in the sense that it outputs 
some prediction Pt for Yt after being given Xt, rather than to output a general rule 
for mapping Xt into Ptj in particular, Pt may depend non-linearly on Xt. (It is easy, 
however, to extract such a rule from the description of the algorithm once it is 
found.) 
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