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Abstract 

We address the problem oflearning structure in nonlinear Markov networks 
with continuous variables. This can be viewed as non-Gaussian multidi­
mensional density estimation exploiting certain conditional independencies 
in the variables. Markov networks are a graphical way of describing con­
ditional independencies well suited to model relationships which do not ex­
hibit a natural causal ordering. We use neural network structures to model 
the quantitative relationships between variables. The main focus in this pa­
per will be on learning the structure for the purpose of gaining insight into 
the underlying process. Using two data sets we show that interesting struc­
tures can be found using our approach. Inference will be briefly addressed. 

1 Introduction 

Knowledge about independence or conditional independence between variables is most help­
ful in ''understanding'' a domain. An intuitive representation of independencies is achieved by 
graphical models in which independency statements can be extracted from the structure of the 
graph. The two most popular types of graphical stochastical models are Bayesian networks 
which use a directed graph, and Markov networks which use an undirected graph. Whereas 
Bayesian networks are well suited to represent causal relationships, Markov networks are 
mostly used in cases where the user wants to express statistical correlation between variables. 
This is the case in image processing where the variables typically represent the grey levels 
of pixels and the graph encourages smootheness in the values of neighboring pixels (Markov 
random fields, Geman and Geman, 1984). We believe that Markov networks might be a useful 
representation in many domains where the concept of cause and effect is somewhat artificial. 
The learned structure of a Markov network also seems to be more easily communicated to 
non-experts; in a Bayesian network not all arc directions can be uniquely identified based on 
training data alone which makes a meaningful interpretation for the non-expert rather difficult. 

As in Bayesian networks, direct dependencies between variables in Markov networks are rep­
resented by an arc between those variables and missing edges represent independencies (in 
Section 2 we will be more precise about the independencies represented in Markov networks). 
Whereas the graphical structure in Markov networks might be known a priori in some cases, 
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the focus of this work is the case that structure is unknown and must be inferred from data. 
For both discrete variables and linear relationships between continuous variables algorithms 
for structure learning exist (Whittaker, 1990). Here we address the problem of learning struc­
ture for Markov networks of continuous variables where the relationships between variables 
are nonlinear. In particular we use neural networks for approximating the dependency be­
tween a variable and its Markov boundary. We demonstrate that structural learning can be 
achieved without a direct reference to a likelihood function and show how inference in such 
networks can be perfonned using Gibbs sampling. From a technical point of view, these 
Marlwv boundary networks perfonn multi-dimensional density estimation for a very general 
class of non-Gaussian densities. 

In the next section we give a mathematical description of Markov networks and a formulation 
of the joint probability density as a product of compatibility functions. In Section 3.1 we 
discuss strucurallearning in Markov networks based on a maximum likelihood approach and 
show that this approach is in general unfeasible. We then introduce our approach which is 
based on learning the Markov boundary of each variable. We also show how belief update can 
be performed using Gibbs sampling. In Section 4 we demonstrate that useful structures can 
be extraced from two data sets (Boston housing data., financial market) using our approach. 

2 Markov Networks 

The following brief introduction to Markov networks is adapted from Pearl (1988). Consider 
a strictly positive I joint probability density p(x) over a set of variables X := {XI, ... , XN }. 
For each variable Xi, let the Marlwv boundary of Xi, Bi ~ X - {Xi}, be the smallest set of 
variables that renders Xi and X - ({ xd U Bd independent under p( x) (the Markov boundary 
is unique for strictly positive distributions). Let the Marlwv network 9 be the undirected 
graph with nodes Xl, ••• , xN and edges between Xi and Xj if and only if Xi E Bj (which also 
implies X j E Bi). In other words, a Markov network is generated by connecting each node to 
the nodes in its Markov boundary. Then for any set Z ~ (X - {Xi, Xj}), Xi is independent 
of X j given Z if and only if every path from Xi to X j goes through at least one node in Z. In 
other words, two variables are independent if any path between those variables is "blocked" 
by a known variable. In particular a variable is independent of the remaining variables if the 
variables in its Markov boundary are known. 

A clique in G is a maximal fully connected sub graph. Given a Markov Network G for p( x) it 
can be shown that p can be factorized as a product of positive functions on the cliques of G, 
i.e. 

(1) 

where the product is over all cliques in the graph. Xclique, is the projection of X to the 
variables of the i-th clique and the gi are the compatibility functions w.r.t. cliquej. K = 
J fli gi(Xclique.)dx is the normalization constant. Note, that a state whose clique functions 
have large values has high probability. The theorem of Hammersley and Clifford states that 
the nonnalized product in equation 1 embodies all the conditional independencies portrayed 
by the graph (Pearl, 1988? for any choice of the gi . 

If the graph is sparse, i.e. if many conditional independencies exist then the cliques might 

1 To simplify the discussion we will assume strict positivity for the rest of this paper. For some of the 
statements weaker conditions may also be sufficient. Note that strict positivity implies that functional 
constraints (for example, a = b) are excluded. 

2 In terms of graphical models: The graph G is an I-map of p. 
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be small and the product will be over low dimensional functions. Similar to Bayesian net­
works where the complexity of describing a joint probability density is greatly reduced by 
decomposing the joint density in a product of ideally low-dimensional conditional densities, 
equation 1 describes the decomposition of a joint probability density function into a product 
of ideally low-dimensional compatibility functions. It should be noted that Bayesian networks 
and Markov networks differ in which specific independencies they can represent (Pearl, 1988). 

3 Learning the Markov Network 

3.1 Likelihood Function Based Learning 

Learning graphical stochastical models is usually decomposed into the problems of learning 
structure (that is the edges in the graph) and of learning the parameters of the joint density 
function under the constraint that it obeys the independence statements made by the graph. 
The idea is to generate candidate structures according to some search strategy, learn the param­
eters for this structure and then judge the structure on the basis of the (penalized) likelihood 
of the model or, in a fully Bayesian approach, using a Bayesian scoring metric. 

Assume that the compatibility functions in equation 1 are approximated using a function ap­
proximator such as a neural network gi 0 ~ 9 i (x). Let {xP }:= 1 be a training set. With 

likelihood L = I1;=1 pM (xP) (where the M in pM indicates a probability density model in 
contrast to the true distribution), the gradient of the log-likelihood with respect to weight Wi 

in gi (.) becomes 

~~I M( P)-~~l ~(P )_NI(i!v;loggi(Xclique,))I1jgj(XcliqueJ)dX a L-0gp x -L-a oggl Xclique, II1 W( )d 
Wi p=l p=l Wi j gj Xclique) X 

(2) 
where the sums are over N training patterns. The gradient decomposes into two terms. Note, 
that only in the first term the training patterns appear explicitly and that, conveniently, the first 
term is only dependent on the clique i which contains parameter Wi. The second term emerges 
from the normalization constant K in equation I. The difficulty is that the integrals in the 
second term can not be solved in closed form for universal types of compatibility functions gi 
and have to be approximated numerically, typically using a form of Monte Carlo integration. 
This is exactly what is done in the Boltzmann machine, which is a special case of a Markov 
network with discrete variables.3 

Currently, we consider maximum likelihood learning based on the compatibility functions un­
suitable, considering the complexity and slowness of Monte Carlo integration (Le. stochastic 
sampling). Note, that for structural learning the maximum likelihood learning is in the inner 
loop and would have to be executed repeatedly for a large number of structures. 

3.2 Markov Boundary Learning 

The difficulties in using maximum likelihood learning for finding optimal structures motivated 
the approach pursued in this paper. If the underlying true probability density is known the 
structure in a Markov network can be found using either the edge deletion method or the 

3 A fully connected Boltzmann machine does not display any independencies and we only have one 
clique consisting of all variables. The compatibility function is gO = exp (- L: WijSiSj). The Boltz­
mann machine typically contains hidden variables, such that not only the second tenn (corresponding to 
the unclamped phase) in equation 2 has to be approximated using stochastic sampling but also the first 
tenn. (In this paper we only consider the case that data are complete). 
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Markov boundary method (Pearl, 1988). The edge deletion method uses the fact that variables 
a and b are not connected by an edge if and only if a and b are independent given all other 
variables. Evaluating this test for each pair of variables reveals the structure of the network. 
The Markov boundary method consists of determining - for each variable a - its Markov 
boundary and connecting a to each variable in its Markov boundary. Both approaches are 
simple if we have a reliable test for true conditional independence. 

Both methods cannot be applied directly for learning structure from data since here tests 
for conditional independence cannot be based on the true underlying probability distribution 
(which is unknown) but has to be inferred from a finite data set. The hope is that dependen­
cies which are strong enough to be supported by the data can still be reliably identified. It is, 
however not difficult to construct cases where simply using an (unreliable) statistical test for 
conditional independence with the edge deletion method does not work wel1.4 

We now describe our approach, which is motivated by the Markov boundary method. First, 
we start with a fully connected graph. We train a model ptt to approximate the conditional 
density of each variable i, given the current candidate variables for its Markov boundary Bi 
which initially are all other variables. For this we can use a wide variety of neural networks. 
We use conditional Parzen windows 

(3) 

where {XP};'=l is the training set and G(x; J-l, 1:) is our notation for a multidimensional Gaus­
sian centered at J-l with covariance matrix 1: evaluated at x. The Gaussians in the nominator are 
centered at X~i}U8: which is the location of the p-th sample in the jointinput!output( {x;} UBi) 

space and the Gaussians in the denominator are centered at x~: which is the location of the 

p-th sample in the input space (Bi). There is one covariance matrix 1:i for each conditional 
density model which is shared between all the Gaussians in that model. 1:i is restricted to a 
diagonal matrix where the diagonal elements in all dimensions except the output dimension i, 
are the same. So there are only two free parameters in the matrix: The variance in the output 
dimension and the variance in all input dimensions. Ei 8' is equal to 1:i except that the row 
and column corresponding to the output dimension ha~e been deleted. For each conditional 
model ptt, 1: i was optimized on the basis of the leave-one-out cross validation log-likelihood. 

Our approach is based on tentatively removing edges from the model. Removing an edge 
decreases the size of the Markov boundary candidates of both affected variables and thus 
decreases the number of inputs in the corresponding two conditional density models. With 
the inputs removed, we retrain the two models (in our case, we simply find the optimal Ei 
for the two conditional Parzen windows). If the removal of the edge was correct, the leave­
one-out cross validation log-likelihood (model-score) of the two models should improve since 
an unnecessary input is removed. (Removing an unnecessary input typically decreases model 
variance.) We therefore remove an edge if the model-scores of both models improve. Let's 
define as edge-removal-score the smaller ofthe two improvements in model-score. 

Here is the algorithm in pseudo code: 

• Start with a fully connected network 

4The problem is that in the edge deletion method the decision is made independently for each edge 
whether or not it should be present There are however cases where it is obvious that at least one of two 
edges must be present although the edge deletion method which tests each edge individually removes 
both. . 
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• Until no edge-removal-score is positive: 

- for all edges edgeij in the network 
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* calculate the model-scores of the reduced models ptt (Xi IBi - {j}) and 
ptt (Xj IB; - {i}) 

* compare with the model-scores of the current models pM (xiIB~) and 
Mi t I 

Pi (XjIBj) 
* set the edge-removal-score to the smaller of both model-score improvements 

- remove the edge for which the edge-removal-score is in maximum. 

• end 

3.3 Inference 

Note that we have learned the structure of the Markov network without an explicit representa­
tion of the probability density. Although the conditional densities p(.r i IBi) provide sufficient 
information to calculate the joint probability density the latter can not be easily computed. 
More precisely, the conditional densities overdetermine the joint density which might lead 
to problems if the conditional densities are estimated from data. For inference, we are typi­
cally interested in the expected value of an unknown variable, given an arbitrary set of known 
variables, which can be calculated using Gibbs sampling. Note, that the conditional densi­
ties pM (Xi IBi) which are required for Gibbs sampling are explicitly modeled in our approach 
by the conditional Parzen windows. Also note, that sampling from the conditional Parzen 
model (as well as many other neural networks, such as mixture of experts models) is easy.5 
In Hofmann (1997) we show that Gibbs sampling from the conditional Parzen models gives 
significantly better results than running inference using either a kernel estimator or a Gaussian 
mixture model of the joint density. 

4 Experiments 

In our first experiment we used the Boston housing data set, which contains 506 samples. 
Each sample consists of the housing price and 13 other variables which supposedly influence 
the housing price in a Boston neighborhood. Maximizing the cross validation log-likelihood 
as score as described in the previous chapters results in a Markov network with 68 edges. 

While cross validation gives an unbiased estimate of whether a direct dependency exists be­
tween two variables the estimate can have a large variance depending on the size of the given 
data set. If the goal of the experiment is to interpret the resulting structure one would prefer 
to see only those edges corresponding to direct dependencies which can be clearly identified 
from the given data set. In other words, if the relationship between two variables observed on 
the given data set is so weak that we can not be sure that it is not just an effect of the finite 
data set size, then we do not want to display the corresponding edge. This can be achieved by 
adding a penalty per edge to the score of the conditional density models. (figure 1). 

Figure 2 shows the resulting Markov network for a penalty per edge of 0.2. The goal of the 
original experiment for which the Boston housing data were collected was to examine whether 
the air quality (5) has direct influence on the housing price (14). Our algorithm did not find 
such an influence - in accordance with the original study. It found that the percentage of low 
status population (13) and the average number of rooms (6) are in direct relationship with 
the housing price. The pairwise relationships between these three variables are displayed in 
figure 3. 

5 Readers not familiar with Gibbs sampling, please consult Geman and Geman (1984). 
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Figure I: Number of edges in the Markov network for the Boston housing data as a function 
of the penalty per edge. 
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Figure 2: Final structure of a run on the full Boston housing data set (penalty = 0.2). 

The scatter plots visualize the relationship between variables 13 and 14, 6 and 14 and between 
6 and 13 (from left to right). The left and the middle correspond to edges in the Markov 
network whereas for the right diagram the corresponding edge (6-13) is missing even though 
both variables are clearly dependent. The reason is, that the dependency between 6 and 13 can 
be explained as indirect relationship via variable 14. The Markov network tells us that 13 and 
6 are independent given 14, but dependent if 14 is unknown. 

In a second experiment we used a financial dataset. Each pattern corresponds to one business 
day. The variables in our model are relative changes in certain economic variables from the 
last business day to the present day which were expected to possibly influence the development 
of the German stock index DAX and the composite DAX, which contains a larger selection of 
stocks than the DAX. We used 500 training patterns consisting of 12 variables (figure 4). In 
comparison to the Boston housing data set most relationships are very weak. Using a penalty 
per edge of 0.2 leads to a very sparse model with only three edges (2-12, 12-1 ,5-11) (not 
shown). A penalty of 0.025 results in the model shown in figure 4. Note, that the composite 
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Figure 3: Pairwise relationship between the variables 6, 13 and 14. Displayed are all data 
points in the Boston housing data set. 
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Figure 4: Final structure of a run on the financial data set with a penalty of 0.025. The small 
numbers next to the edges indicate the strength of the connection, i.e. the decrease in score 
(excluding the penalty) when the edge is removed. All variables are relative changes - not 
absolute values. 

DAX is connected to the DAX mainly through the price earning ratio. While the DAX has 
direct connections to the Nikkei index and to the DM-USD exchange rate the composite DAX 
has a direct connection to the Morgan Stanley index for Germany. Recall, that composite 
DAX contains the stocks of many smaller companies in addition to the DAX stocks. The 
graph structure might be interpreted (with all caution) in the way that the composite DAX 
(including small companies) has a stronger dependency on national business whereas the DAX 
(only including the stock of major companies) reacts more to international indicators. 

5 Conclusions 

We have demonstrated, to our knowledge for the first time, how nonlinear Markov networks 
can be learned for continuous variables and we have shown that the resulting structures can 
give interesting insights into the underlying process. We used a representation based on mod­
els of the conditional probability density of each variable given its Markov boundary. These 
models can be trained locally. We showed how searching in the space of all possible structures 
can be done using this representation. 

We suggest to use the conditional densities of each variable given its Markov boundary also for 
inference by Gibbs sampling. Since the required conditional densities are modeled explicitly 
by our approach and sampling from these is easy, Gibbs sampling is easier and faster to realize 
than with a direct representation of the joint density. 

A topic of further research is the variance in resulting structures, i.e. the fact that different 
structures can lead to almost equally good models. It would for example be desirable to 
indicate to the user in a principled way the certainty of the existence or nonexistence of edges. 
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