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Abstract 

Initial experiments described here were directed toward using reinforce­
ment learning (RL) to develop an automated recovery system (ARS) for 
high-agility aircraft. An ARS is an outer-loop flight-control system de­
signed to bring an aircraft from a range of out-of-control states to straight­
and-level flight in minimum time while satisfying physical and phys­
iological constraints. Here we report on results for a simple version 
of the problem involving only single-axis (pitch) simulated recoveries. 
Through simulated control experience using a medium-fidelity aircraft 
simulation, the RL system approximates an optimal policy for pitch-stick 
inputs to produce minimum-time transitions to straight-and-Ievel flight in 
unconstrained cases while avoiding ground-strike. The RL system was 
also able to adhere to a pilot-station acceleration constraint while execut­
ing simulated recoveries. 
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1 INTRODUCTION 

An emerging use of reinforcement learning (RL) is to approximate optimal policies for 
large-scale control problems through extensive simulated control experience. Described 
here are initial experiments directed toward the development of an automated recovery sys­
tem (ARS) for high-agility aircraft. An ARS is an outer-loop flight control system designed 
to bring the aircraft from a range of initial states to straight, level, and non-inverted flight in 
minimum time while satisfying constraints such as maintaining altitude and accelerations 
within acceptable limits. Here we describe the problem and present initial results involving 
only single-axis (pitch) recoveries. Through extensive simulated control experience using 
a medium-fidelity simulation of an F-16, the RL system approximated an optimal policy 
for longitudinal-stick inputs to produce near-minimum-time transitions to straight and level 
flight in unconstrained cases, as well as while meeting a pilot-station acceleration constraint. 

2 AIRCRAFT MODEL 

The aircraft was modeled as a dynamical system with state vector x = {q, 0, p, r, {3, Vi}, 
where q = body-axes pitch rate, 0 = angle of attack, p = body-axes roll rate, r = 
body-axes yaw rate, {3 = angle of sideslip, Vi = total airspeed, and control vector fl = 
{flse , flae, fla/' Orud} of effector and pseudo-effector displacements. The controls are de­
fined as: flse = symmetric elevon, oae = asymmetric elevon, oal = asymmetric flap, and 
Orud = rudder. (A pseudo-effector is a mathematically convenient combination of real ef­
fectors that, e.g., contributes to motion in a limited number of axes.) The following addi­
tional descriptive variables were used in the RL problem formulation: h = altitude, h = 
vertical component of velocity, e = pitch attitude, N z = pilot-station normal acceleration. 

For the initial pitch-axis experiment described here, five discrete actions were available 
to the learning agent in each state; these were longitudinal-stick commands selected from 
{-6, -3,0, +3, +6} lbf. The command chosen by the learning agent was converted into 
a desired normal-acceleration command through the standard F-16 longitudinal-stick com­
mand gradient with software breakout. This gradient maps pounds-of-force inputs into de­
sired acceleration responses. We then produce an approximate relationship between normal 
acceleration and body-axes pitch rate to yield a pitch-rate flying-qualities model. Given this 
model, an inner-loop linear-quadratic (LQ) tracking control algorithm determined the actu­
ator commands to result in optimal model-following of the desired pitch-rate response. 

The aircraft model consisted of complete translational and rotational dynamics, including 
nonlinear terms owing to inertial cross-coupling and orientation-dependent gravitational ef­
fects. These were obtained from a modified linear F-16 model with dynamics of the form 

j; = Ax + Bfl + b + N 
where A and B were the F-16 aero-inertial parameters (stability derivatives) and effector 
sensitivities (control derivatives). These stability and control derivatives and the bias vec­
tor, b, were obtained from linearizations of a high-fidelity nonlinear, six-degree-of-freedom 
model. Nonlinearities owing to inertial cross-coupling and orientation-dependent gravita­
tional effects were accounted for through the term N, which depended nonlinearly on the 
state. Nonlinear actuator dynamics were modeled via the incorporation ofF-16 effector-rate 
and effector-position limits. See Ward et al. (1996) for additional details. 

3 PROBLEM FORMULATION 

The RL problem was to approximate a minimum-time control policy capable of bringing the 
aircraft from a range of initial states to straight, level, and non-inverted flight, while satis­
fying given constraints, e.g., maintaining the normal acceleration at the pilot station within 
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an acceptable range. For the single-axis (pitch-axis) flight control problem considered here, 
recovered flight was defined by: 

q = q = it = h = i't = o. (1) 

Successful recovery was achieved when all conditions in Eq. 1 were satisfied simultane­
ously within pre-specified tolerances. 

Because we wished to distinguish between recovery supplied by the LQ tracker and that 
learned by the RL system, special attention was given to formulating a meaningful test to 
avoid falsely attributing successes to the RL system. For example, if initial conditions were 
specified as off-trim perturbations in body-axes pitch rate, pitch acceleration, and true air­
speed, the RL system may not have been required because the LQ controller would provide 
all the necessary recovery, i.e., zero longitudinal-stick input would result in a commanded 
body-axes pitch rate of zero deg./ sec. Because this controller is designed to be highly re­
sponsive, its tracking and integral-error penalties usually ensure that the aircraft responses 
attain the desired state in a relatively short time. The problem was therefore formulated to 
demand recovery from aircraft orientations where the RL system was primarily responsible 
for recovery, and the goal state was not readily achieved via the stabilizing action of the LQ 
control law. 

A pitch-axis recovery problem of interest is one in which initial pitch attitude, e, is selected 
to equal etrim +U(80Tn ,n' 80Tna:l:)' where etrim == atrim (by definition), U is a uniformly 
distributed random number, and eOTnin and eoTnaz define the boundaries of the training re­
gion, and other variables are set so that when the aircraft is parallel to the earth (80 = 0), 
it is "pancaking" toward the ground (with positive trim angle of attack). Other initial con­
ditions correspond to purely-translational climb or descent of the aircraft. For initial condi­
tions where eo < atrim, the flight vehicle will descend, and in the absence of any corrective 
longitudinal-stick force, strike the ground or water. Because it imposes no constraints on al­
titude or pitch-angle variations, the stabilizing response of the LQ controller is inadequate 
for providing the necessary recovery. 

4 REINFORCEMENT LEARNING ALGORITHM 

Several candidate RL algorithms were evaluated for the ARS. Initial efforts focused primar­
ily on (1) Q-Learning, (2) alternative means for approximating the action-value function (Q 
function), and (3) use of discrete versus continuous-action controls. During subsequent in­
vestigations, an extension of Q-Learning called Residual Advantage Learning (Baird, 1995; 
Harmon & Baird, 1996) was implemented and successfully applied to the pitch-axis ARS 
problem. As with action-values in Q-Learning, the advantage function, A(x, u), may be 
represented by a function approximation system of the form 

A(x,u) = ¢(x,ufO, (2) 

where ¢( x, u) is a vector of relevant features and 0 are the corresponding weights. Here, the 
advantage function is linear in the weights, 0, and these weights are the modifiable, learned 
parameters. 

For advantage functions of the form in Eq. 2, the update rule is: 

Ok+l Ok - a ((r + "Y~t A(y, b*)) K~t + (1 - K~t) A(x, a*) - A(x, a)) 

• ( ~"Y~t¢(y, b*) K~t + ~ (1 - K~t) ¢(x, a*) - ¢(x, a)) , 

where a* = argminaA(x, a) and b* = argminbA(y, b), !l.t is the system rate (0.02 sec. 
in the ARS), "Y~t is the discount factor, and K is an fixed scale factor. In the above notation, 
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y is the resultant state, i.e., the execution of action a results in a transition from state x to 
its successor y. 

The Residual Advantage Learning update collapses to the Q-Learning update for the case 
~ = 0, K = L. The parameter ~ is a scalar that controls the trade-off between residual­
gradient descent when ~ = 1, and a faster, direct algorithm when ~ = O. Harmon & Baird 
(1996) address the choice of ~, suggesting the following computation of ~ at each time step: 

;F,. l:o WdWrg 
'J!'= +J-L 

l:o(Wd - wrg)wrg 

where Wd and Wrg are traces (one for each (J of the function approximation system) associ­
ated with the direct and residual gradient algorithms, respectively, and J-L is a small, positive 
constant that dictates how rapidly the system forgets. The traces are updated during each 
cycle as follows 

Wd f- (1-J-L)Wd-J-L[(r+'Y~tA(y,b*)) K~t+(1- K~t)A(X,a*)] 

• [- :(JA(x, a*)] 

wrg f- (1-J-L)Wrg-J-L[(r+'Y~tA(y,b*»K~t+(1- K~t)A(x,a*)-A(X,a)] 

• ['Y~t ;(JA(y,b*) K~t + (1- K~t) ;(JA(x,a*) - ;(JA(X, a)] . 

Advantage Learning updates of the weights, including the calculation of an adaptive ~ as 
discussed above, were implemented and interfaced with the aircraft simulation. The Ad­
vantage Learning algorithm consistently outperformed its Q-Learning counterpart. For this 
reason, most of our efforts have focused on the application of Advantage Learning to the 
solution of the ARS. The feature vector 4>(x, u) consisted of normalized (dimensionless) 
states and controls, and functions ofthese variables. Use ofthese nondimensionalized vari­
ables (obtained via the Buckingham 7r-theorem; e.g., Langharr, 1951) was found to enhance 
greatly the stability and robustness of the learning process. Furthermore, the RL system ap­
peared to be less sensitive to changes in parameters such as the learning rate when these 
techniques were employed. 

5 TRAINING 

Training the RL system for arbitrary orientations was accomplished by choosing random 
initial conditions on e as outlined above. With the exception of h, all other initial condi­
tions corresponded to trim values for a Mach 0.6, 5 kIt. flight condition. Rewards were 
-1 per-time-step until the goal state was reached. In preliminary experiments, the training 
region was restricted to ± 0.174 rad.(l0 deg.) from the trim pitch angle. For this range of 
initial conditions, the system was able to learn an appropriate policy given only a handful of 
features (approximately 30). The policy was significantly mature after 24 hours oflearning 
on an HP-730 workstation and appeared to be able to achieve the goal for arbitrary initial 
conditions in the aforementioned domain. 

We then expanded the training region and considered initial e values within 
± 0.785 rad. (45 deg .) of trim. The policy previously learned for the more restricted 
training domain performed well here too, and learning to recover for these more drastic 
off-trim conditions was trivial. No boundary restrictions were imposed on the system, but 
a report of whether the aircraft would have struck the ground was maintained. It was noted 
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that recovery from all possible initial conditions could not be achieved without hitting 
the ground. Episodes in which the ground would have been encountered were a result 
of inadequate control authority and not an inadequate RL policy. For example, when the 
initial pitch angle was at its maximum negative value, maximum-allowable positive stick 
(6 lbf.) was not sufficient to pull up the aircraft nose in time. To remedy this in subsequent 
experiments, the number of admissible actions was increased to include larger-magnitude 
commands: {-12, -9, -6, -3,0, +3, +6, +9, +12} lbf. 

Early attempts at solving the pitch-axis recovery problem with the expanded initial con­
ditions in conjunction with this augmented action set proved challenging. The policy that 
worked well in the two previous experiments was no longer able to attain the goal state; 
it was only able to come close and oscillate indefinitely about the goal region. The agent 
learned to pitch up and down appropriately, e.g., when h was negative it applied a corrective 
positive action, and vice versa. However, because of system and actuator dynamics mod­
eled in the simulation, the transient response caused the aircraft to pass through the goal 
state. Once beyond the goal region, the agent applied an opposite action, causing it to ap­
proach the goal state again, repeating the process indefinitely (until the system was reset 
and a new trial was started). Thus, the availability of large-amplitude commands and the 
presence of actuator dynamics made it difficult for the agent to fonnulate a consistent pol­
icy that afforded all goal state criteria being satisfied simultaneously. One might remedy 
the problem by removing the actuator dynamics; however, we did not wish to compromise 
simulation fidelity, and chose to use an expanded feature set to improve RL perfonnance. 
Using a larger collection offeatures with approximately 180 inputs, the RL agent was able 
to formulate a consistent recovery policy. The learning process required approximately 72 
hours on an HP-730 workstation. (On this platform, the combined aircraft simulation and 
RL software execution rate was approximately twice that of real-time.) At this point per­
formance was evaluated. The simulation was run in evaluation mode, i.e., learning rate was 
set to zero and random exploration was disabled. Performance is summarized below. 

6 RESULTS 

6.1 UNCONSTRAINED PITCH-AXIS RECOVERY 

Fig. 1 shows the transition times from off-trim orientations to the goal state as a function 
of initial pitch (inclination) angle. Recovery times were approximately 11-12 sec. for the 
worst-case scenarios. i.e .• 1801 = 45 deg. off-trim. and decrease (almost) monotonically 
for points closer to the unperturbed initial conditions. The occasional "blips" in the figure 
suggest that additional learning would have improved the global RL performance slightly. 
For 180 1 = 45 deg. off-trim, maximum altitude loss and gain were each approximately 1667 
ft. (0.33 x 5000 f t. ). These excursions may seem substantial. but when one looks atthe time 
histories for these maneuvers, it is apparent that the RL-derived policy was perfonning well. 
The policy effectively minimizes any altitude variation; the magnitude of these changes are 
principally governed by available control authority and the severity of the flight condition 
from which the policy must recover. 

Fig. 2 shows time histories of relevant variables for one of the limiting cases. The first col­
umn shows body-axes pitch rate (Qb) and commanded body-axes pitch rate (Qbmodel) 
in (deg./sec.), pilot station nonnal acceleration (Nz) in (g), angle of attack (Alpha) in 
(deg.). and pitch attitude (Theta) in (deg.), respectively. The second column shows the 
longitudinal stick action executed by the RL system (lbf.), the left and right elevator de­
flections (deg.). total airspeed (ft./ sec.), and altitude (ft.). The majority ofthe 1600+ ft. 
altitude loss occurs between zero and five sec.; during this time, the RL system is applying 
maximum (allowable) positive stick. Thus, this altitude excursion is principally attributed 
to limited control authority as well as significant off-trim initial orientations. 
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Figure 1: Simulated Aircraft Recovery Times for Unconstrained Pitch-Axis ARS 
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Figure 2: TIme Histories During Unconstrained Pitch-Axis Recovery for 8 0 = 8 trim -

45 deg . 
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6.2 CONSTRAINED PITCH-AXIS RECOVERY 

The requirement to execute aircraft recoveries while adhering to pilot-safety constraints was 
a deciding factor in using RL to demonstrate the automated recovery system concept. The 
need to recover an aircraft while minimizing injury and, where possible, discomfort to the 
flight crew, requires that the controller incorporate constraints that can be difficult or impos­
sible to express in forms suitable for linear and nonlinear programming methods. 

In subsequent ARS investigations, allowable pilot-station normal acceleration was re­
stricted to the range -1.5 9 ~ N z ~ 3.5 g. These values were selected because the un­
constrained ARS was observed to exceed these limits. Several additional features (for a 
total of 189) were chosen, and the learning process was continued. Initial weights for the 
original 180 inputs corresponded to those from the previously learned policy; the new fea­
tures were chosen to have zero weights initially. Here, the RL system learned to avoid the 
normal acceleration limits and consistently reach the goal state for initial pitch angles in the 
region [-45 + 8 trim , 35 + 8 trim ] deg. Additional learning should result in improved re­
covery policies in this bounded acceleration domain for all initial conditions. Nonetheless, 
the results showed how an RL system can learn to satisfy these kinds of constraints. 

7 CONCLUSION 

In addition to the results reported here, we conducted extensive analysis of the degree to 
which the learned policy successfully generalized to a range of initial conditions not expe­
rienced in training. In all cases, aircraft responses to novel recovery scenarios were stable 
and qualitatively similar to those previously executed in the training region. We are also 
conducting experiments with a multi-axes ARS, in which longitudinal-stick and lateral-stick 
sequences must be coordinated to recover the aircraft. Initial results are promising, but sub­
stantially longer training times are required. In summary, we believe that the results pre­
sented here demonstrate the feasibility of using RL algorithms to develop robust recovery 
strategies for high-agility aircraft, although substantial further research is needed. 
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