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Abstract 

In this paper, we present a novel hybrid architecture for continuous speech 
recognition systems. It consists of a continuous HMM system extended 
by an arbitrary neural network that is used as a preprocessor that takes 
several frames of the feature vector as input to produce more discrimin­
ative feature vectors with respect to the underlying HMM system. This 
hybrid system is an extension of a state-of-the-art continuous HMM sys­
tem, and in fact, it is the first hybrid system that really is capable of outper­
forming these standard systems with respect to the recognition accuracy. 
Experimental results show an relative error reduction of about 10% that 
we achieved on a remarkably good recognition system based on continu­
ous HMMs for the Resource Management 1 OOO-word continuous speech 
recognition task. 

1 INTRODUCTION 

Standard state-of-the-art speech recognition systems utilize Hidden Markov Models 
(HMMs) to model the acoustic behavior of basic speech units like phones or words. Most 
commonly the probabilistic distribution functions are modeled as mIXtures of Gaussian dis­
tributions. These mixture distributions can be regarded as output nodes of a Radial-Basis­
Function (RBF) network that is embedded in the HMM system [1]. Contrary to neural train­
ing procedures the parameters of the HMM system, including the RBF network, are usu­
ally estimated to maximize the training observations' likelihood. In order to combine the 
time-warping abilities of HMMs and the more discriminative power of neural networks, 
several hybrid approaches arose during the past five years, that combine HMM systems and 
neural networks. The best known approach is the one proposed by Bourlard [2]. It replaces 
the HMMs' RBF -net with a Multi-Layer-Perceptron (MLP) which is trained to output each 
HMM state's posterior probability. At last year's NIPS our group presented a novel hybrid 
speech recognition approach that combines a discrete HMM speech recognition system and 
a neural quantizer (3). By maximizing the mutual information between the VQ-Iabels and 
the assigned phoneme-classes, this apl'roach outperforms standard discrete recognition sys­
tems. We showed that this approach IS capable of building up very accurate systems with 
an extremely fast likelihood computation, that only consists of a quantization and a table 
lookup. This resulted in a hybrid system with recognition performance equivalent to the best 
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Figure I: Architecture of the hybrid NN/HMM system 

continuous systems, but with a much faster decoding. Nevertheless, it has turned out that 
this hybrid approach is not really capable of substantially outperforming very good continu­
ous systems with respect to the recognition accuracy. This observation is similar to experi­
ences with Bourlard's MLP approach. For the decoding procedure, this architecture offers 
a very efficient pruning technique (phone deactivation pruning [4)) that is much more effi­
cient than pruning on likelihoods, but until today this approach did not outperform standard 
continuous HMM systems in recognition performance. 

2 HYBRID CONTINUOUS HMMlMLP APPROACH 

Therefore, we followed a different approach, namely the extension of a state-of-the-art con­
tinuous system that achieves extremely good recognition rates with a neural net that is 
trained with MMI-methods related to those in [5]. The major difference in this approach 
is the fact that the acoustic processor is not replaced by a neural network, but that the Gaus­
sian probability density component is retained and combined with a neural component in an 
appropriate manner. A similar approach was presented in [6] to improve a speech recogni­
tIOn system for the TIMIT database. We propose to regard the additional neural component 
as being part of the feature extraction, and to reuse it in recognition systems of higher com­
plexity where discriminative training is extremely expensive. 

2.1 ARCHITECTURE 

The basic architecture of this hybrid system is illustrated in Figure 1. The neural net func­
tions as a feature transformation that takes several additional past and future feature vec­
tors into account to produce an improved more discriminant feature vector that is fed into 
the HMM system. This architecture allows (at least) three ways of interpretation; 1. as a 
hybrid system that combines neural nets and continuous HMMs, 2. as an LDA-like trans­
formation that incorporates the HMM parameters into the calculation of the transformation 
matrix and 3. as feature extraction method, that allows the extraction offeatures according 
to the underlying HMM system. The considered types of neural networks are linear trans­
formations, MLPs and recurrent MLPs. A detailed 3escription of the possible topologies is 
given in Section 3. 
With this architecture, additional past and future feature vectors can be taken into account 
in the probability estimation process without increasing the dimensionality of the Gaussian 
mixture components. Instead of increasing the HMM system's number of parameters the 
neural net is trained to produce more discriminant feature vectors with respect to the trained 
HMM system. Of course, adding some kind of neural net increases the number of para­
meters too, but the increase is much more moderate than it would be when increasing each 
Gaussian's dimensionality. 
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2.2 TRAINING OBJECTIVE 

The original purpose of this approach was the intention to transfer the hybrid approach 
presented in [3], based on MMI neural network, to (semi-) continuous systems. ThIS way, 
we hoped to be able to achieve the same remarkable improvements that we obtained on 
discrete systems now on continuous systems, which are the much better and more flexible 
baseline systems. The most natural way to do this would be the re-estimation of the code­
book of Gaussian mean vectors of a semi-continuous system using the neural MMI training 
algorithm presented in [31. Unfortunately though, this won't work, as this codebook of a 
semi-continuous system does not determine a separation of the feature space, but is used as 
means of Gaussian densities. The MMI-principle can be retained, however, by leaving the 
original HMM system unmodified and instead extending it with a neural component, trained 
according to a frame-based MMI approach, related to the one in [3] . The MMI criterion is 
usually formulated in the following way: 

)..MMI = argmaxi).(X, W) = argmax(H>.(X) - H>.(XIW)) = argmax P>.(~l~) 
>. >. >. P>. 

(1) 
This means that following the MMI criterion the system's free parameters ,\ have to be es­
timated to maximize the quotient of the observation's likelihood p>.(XIW) for the known 
transcription Wand its overall likelihood P>. (X). With X = (x(l), x(2), .. . x(T)) denot­
ing the training observations and W = (w(l), w(2) , .. . w(T)) denoting the HMM states­
assigned to the observation vectors in a Viterbi-alignment - the frame-based MMI criterion 
becomes 

T 

)..MMI ~ arg~ax L i).(x(i), w(i)) 
i=1 

ITT p>.(x(i)lw(i)) ITT p>.(x(i)lw(i)) 
=arg~ax . p>.(x(i)) :::::::arg~ax . s. (2) 

1:1 %=1 2: P>.(X(Z)lwk)p(Wk) 
k=1 

where S is the total number ofHMM states, (W1 , '" ws) denotes the HMM states and p( Wk) 
denotes each states' prior-probability that is estimated on the alignment of the training data 
or by an analysis of the lan~age model. 
Eq. 2 can be used to re-estImate the Gaussians of a continuous HMM system directly. In 
[7] we reported the slight improvements in recognition accuracy that we achieved with this 
parameter estimation. However, it turned out, that only the incorporation of additional fea­
tures in the probability calculation pipeline can provide more discriminative emission prob­
abilities and a major advance in recognition accuracy. Thus, we experienced it to be more 
convenient to train an additional neural net in order to maximize Eq. 2. Besides, this ap­
proach offers the possibility of improving a recognition system by applying a trained feature 
extraction network taken from a different system. Section 5 will report our positive exper­
iences with this procedure. 
At first, for matter of simplicity, we will consider a linear network that takes P past fea­
ture vectors and F future feature vectors as additional input. With the linear net denoted as 
a (P + F + 1) x N matrix NET, each component x' (t)[c] of the network output x'(t) 
computes to 

P+F N 

x'(t)[c] = L L x(t - P + i)[jJ . N ET[i * N + j][c] Vc E {L.N} (3) 
i=O j=1 

so that the derivative with respect to a component of NET easily computes to 

8x'(t)[cJ _ 6 -x(t - P i)['J (4) 
8NET[i*N+j][c] - C,c + J 

In a continuous HMM system with diagonal covariance matrices the pdf of each HMM state 
w is modeled by a mixture of Gaussian components like 

N 2 C 1 ~ (m;[I)-x[l]) 
1U 1 -"2 L, ajll) 

p>.(xlw) = Ldwj e 1=1 (5) 
j=1 y'(2rr)nIUjl 
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A pdfs derivative with respect to a component x'[e] of the net's output becomes 

N 
C 1 ~ (mj[ll-",/[I))2 

8p,\.(x'lw) _ ~ d . (:e[e] - mj[e)) 1 e- 2 ~ aj[!} (6) 
8x'[e) - ~ WJ oAe) y'(21l')nIO'jl 

With x(t) in Eq. 2 now replaced by the net output x'(t) the partial derivative ofEq. 2 with 
respect to a probabilistic distribution function p( x' (i) IWk) computes to 

8h(x'(i), w(i)) _ <5W(i) ,Wk 

8p,\.(x'(i)lwk) - p,\.(x(i)lwk) s 
2: p,\.(x(i)lwI)p(wd 
1=1 

(7) 

Thus, using the chain rule the derivative of the net's parameters with respect to the frame­
based MMI criterion can be computed as displayed in Eq. 8 

8h(X, W) = t(t(8h(:e(i)IW(i))) 8p,\.(x'(i)lwk) ox' (i)[c] ) (8) 
8N ET[lHe) i=l k=l op,\.(x'(i)lwk) ox' (i)[e] oN ET[lHe) 

and a gradient descent procedure can be used to determine the optimal parameter estimates. 

2.3 ADVANTAGES OF THE PROPOSED APPROACH 

When using a linear network, the proposed approach strongly resembles the well known 
Linear Discriminant Analysis (LDA) [8] in architecture and training objective. The main 
difference is the way the transformation is set up. In the proposed approach the transform­
ation is computed by taking directly the HMM parameters into account whereas the LDA 
only tries to separate the features according to some class assignment. With the incorpor­
ation of a trained continuous HMM system the net's parameters are estimated to produce 
feature vectors that not only have a good separability in general, but also have a distribu­
tion that can be modeled with mixtures ofGaussians very well. Our experiments given at the 
end ofthis paper prove this advantage. Furthermore, contrary to LDA, that produces feature 
vectors that don't have much in common with the original vectors, the proposed approach 
only slightly modifies the input vectors. Thus, a well trained continuous system can be ex­
tended by the MMI-net approach, in order to improve its recognition performance without 
the need for completely rebuilding it. In addition to that, the approach offers a fairly easy 
extension to nonlinear networks (MLP) and recurrent networks (recurrent MLP). This will 
be outlined in the following Section. And, maybe as the major advantage, the approach al­
lows keeping up the division of the input features into streams of features that are strongly 
uncorrelated and which are modeled with separate pdfs. The case of multiple streams is dis­
cussed in detail in Section 4. Besides) the MMI approach offers the possibility of a unified 
training of the HMM system and the reature extraction network or an iterative procedure of 
training each part alternately. 

3 NETWORK TOPOLOGIES 

Section 2 explained how to train a linear transformation with respect to the frame-based 
MMI criterion. However, to exploit all the advantages of the proposed hybrid approach the 
network should be able to perform a nonlinear mapping, in order to produce features whose 
distribution is (closer to) a mixture of Gaussians although the original distribution is not. 

3.1 MLP 

When using a fully connected MLP as displayed in Figure 2 with one hidden layer of H 
nodes, that perform the nonlinear function /, the activation of one of the output nodes 
x'(t)[e] becomes 

H P+F N 

x'(tHe) = t; L2[hJ[e)· f( BIAS. + ~ ~ x(t - P + i)li)· L1[i * N + jJ[h)) (9) 
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Figure 2: Hybrid system with a nonlinear feature transfonnation 

which is easily differentiable with respect to the nonlinear network's parameters. In our 
experiments we chose f to be defined as the hyperbolic tangents f(x) := tanh(x) = (2(1+ 
e -X) -1 - 1) so that the partial derivative with respect to i.e. a weight L 1 [i . N + J] [h] of 
the first layer computes to 

ax' (t)[e] 
x(t - p + i)[J] . L2[h][c] 

aL1[i . N + 3][h] 
(10) 

.COSh( BIAS. + % ~ x(t - P + i)lil· L1[i * N + j][h1r' 

and the gradient can be set up according to Eq. 8. 

3.2 RECURRENT MLP 

With the incorporation of several additional past feature vectors as explained in Section 2, 
more discriminant feature vectors can be generated. However, this method is not capable of 
modeling longer term relations, as it can be achieved by extending the network with some 
recurrent connections. For the sake of simplicity, in our experiments we simply extended 
the MLP as indicated with the dashed lines in Figure 2 by propagating the output x (t) back 
to the input of the network (with a delay of one discrete time step). This type of recurrent 
neural net is often referred to as a 'Jordan' -network. Certainly, the extension of the network 
with additional hidden nodes in order to model the recurrence more independently would 
be possible as well. 

4 MULTI STREAM SYSTEMS 

In HMM-based recognition systems the extracted features are often divided into streams 
that are modeled independently. This is useful the less correlated the divided features are. 
In this case the overall likelihood of an observation computes to 

M 

p>.(xlw) = IT p$>.(xlw)w, (11) 

where each of the stream pdfs p$>.(xlw) only uses a subset of the features in x. The stream 
weights W$ are usually set to unity. 



768 D. Willett and G. Rigoll 

Table 1: Word error rates achieved in the experiments 

A multi stream system can be improved by a neural extraction for each stream and an in­
dependent training of these neural networks. However, it has to be considered that the 
subdivided features usually are not totally independent and by considering multiple input 
frames as illustrated in Figure 1 this dependence often increases. It is a common practice, 
for instance, to model the features' first and second order delta coefficients in independ­
ent streams. So, for sure the streams lose independence when considering multiple frames, 
as these coefficients are calculated using the additional frames. Nevertheless, we found it 
to give best results to maintain this subdivision into streams, but to consider the stronger 
correlation by training each stream's net dependent on the other nets' outputs. A training 
criterion follows straight from Eq. 11 inserted in Eq. 2. 

\ _ rrT p).(x(i)lw(i)) _ rrT 11M (P3).(X(i)IW(i)))W' (12) 
/\MMI - argmax ( (.)) - argmax ( (.)) 

). i=l P). X t .). i=13=1 Ps). X z 

The derivative of this equation with respect to the pdf P.;). (xlw) ofa specific stream s de­
pends on the other streams' pdfs. With the Ws set to unity it is 

8h(x'(;): w(i)) = (rr ps).(X(i)I~(i))) ( 6w (i):Wk _ s p(Wk) ) 
8ps).(x (Z)IWk) ~. P3).(X(Z)) ps).(X(Z)IWk) 'I\' ((')1) ( ) 

3 r 3 W P.;). x Z WI P WI 
1=1 

(13) 
Neglecting the correlation among the streams the training of each stream's net can be done 
independently. However, the more the incorporation of additional features increases the 
streams' correlation, the more important it gets to train the nets in a unified training pro­
cedure according to Eq. 13. 

5 EXPERIMENTS AND RESULTS 

We applied the proposed approach to improve a context-independent (monophones) and a 
context-dependent (triphones) continuous speech reco~tion system for the 1000-wordRe­
source Management (RM) task. The systems used lmear HMMs of three emitting states 
each. The tying of Gaussian mixture components was perfonned with an adaptive proced­
ure according to [9]. The HMM states of the word-internal triphone system were clustered 
in a tree-based phonetic clustering procedure. Decoding was perfonned with a Viterbi­
decoder and the standard wordpair-grammar of perplexity 60. Training of the MLP was 
perfonned with the RPROP algorithm. For training the weights of the recurrent connec­
tions we chose real-time recurrent learning. The average error rates were computed using 
the test-sets Feb89, Oct89, Feb91 and Sep92. 
The table above shows the recognition results with single stream systems in its first section. 
These systems simply use a 12-value Cepstrum feature vector without the incorporation of 
delta coefficients. The systems with an input transfonnation use one additional past and one 
additional future feature vector as input. The proposed approach achieves the same perfonn­
ance as the LDA, but it is not capable of outperfonning It. 
The second section of the table lists the recognition results with four stream systems that 
use the first and second order delta coefficients in additional streams plus log energy and 
this values' delta coefficients in a forth stream. The MLP system trained according to Eq. 
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II slightly outperforms the other approaches. The incorporation of recurrent network con­
nections does not improve the system's performance. 
The third section of the table lists the recognition results with four stream systems with a 
context-dependent acoustic modeling (triphones). The applied LDA and the MMI -networks 
were taken from the monophone four stream system. On the one hand, this was done to 
avoid the computational complexity that the MMI training objective causes on context­
dependent systems. On the other hand, this demonstrates that the feature vectors produced 
by the trained networks have a good discrimination for continuous systems in general. 
Again, the MLP system outperforms the other· approaches and achieves a very remarkable 
word error rate. It should be pointed out here, that the structure of the continuous system as 
reported in (9) is already highly optimized and it is almost impossible to further reduce the 
error rate by means of any acoustic modeling method. This is reflected in the fact that even 
a standard LDA cannot improve this system. Only the new neural approach leads to a 10% 
reduction in error rate which is a large improvement considering the fact that the error rate 
of the baseline system is among the best ever reported for the RM database, 

6 CONCLUSION 

The paper has presented a novel approach to discriminant feature extraction. A MLP net­
work has successfully been used to compute a feature transformation that outputs extremely 
suitable features for continuous HMM systems. The experimental results have proven that 
the proposed approach is an appropriate method for including several feature frames in the 
probability estimation process without increasing the dimensionality of the Gaussian mix­
ture components in the HMM system. Furthermore did the results on the triphone speech 
recognition system prove that the approach provides discriminant features, not only for the 
system that the mapping is computed on, but for HMM systems with a continuous modeling 
in general: The application of recurrent networks did not improve the recognition accuracy. 
The longer range relations seem to be very weak and they seem to be covered well by using 
the neighboring feature vectors and first and second order delta coefficients. The proposed 
unified training procedure for multiple nets in multi-stream systems allows keeping up the 
subdivision of features of weak correlations, and gave us best profits in recognition accur­
acy. 
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