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Abstract 

This paper is concerned with the problem of Reinforcement Learn­
ing (RL) for continuous state space and time stocha.stic control 
problems. We state the Harnilton-Jacobi-Bellman equation satis­
fied by the value function and use a Finite-Difference method for 
designing a convergent approximation scheme. Then we propose a 
RL algorithm based on this scheme and prove its convergence to 
the optimal solution. 

1 Introduction to RL in the continuous, stochastic case 

The objective of RL is to find -thanks to a reinforcement signal- an optimal strategy 
for solving a dynamical control problem. Here we sudy the continuous time, con­
tinuous state-space stochastic case, which covers a wide variety of control problems 
including target, viability, optimization problems (see [FS93], [KP95])}or which a 
formalism is the following. The evolution of the current state x(t) E 0 (the state­
space, with 0 open subset of IRd ), depends on the control u(t) E U (compact subset) 
by a stochastic differential equation, called the state dynamics: 

dx = f(x(t), u(t))dt + a(x(t), u(t))dw (1) 
where f is the local drift and a .dw (with w a brownian motion of dimension rand 
(j a d x r-matrix) the stochastic part (which appears for several reasons such as lake 
of precision, noisy influence, random fluctuations) of the diffusion process. 

For initial state x and control u(t), (1) leads to an infinity of possible traj~tories 
x(t). For some trajectory x(t) (see figure I)., let T be its exit time from 0 (with 
the convention that if x(t) always stays in 0, then T = 00). Then, we define the 
functional J of initial state x and control u(.) as the expectation for all trajectories 
of the discounted cumulative reinforcement : 

J(x; u(.)) = Ex,u( .) {loT '/r(x(t), u(t))dt +,,{ R(X(T))} 
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where rex, u) is the running reinforcement and R(x) the boundary reinforcement. 
'Y is the discount factor (0 :S 'Y < 1). In the following, we assume that J, a are of 
class C2 , rand Rare Lipschitzian (with constants Lr and LR) and the boundary 
80 is C2 . 

• · all · 
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• • 
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Figure 1: The state space, the discretized ~6 (the square dots) and its frontier 8~6 
(the round ones). A trajectory Xk(t) goes through the neighbourhood of state ~. 

RL uses the method of Dynamic Program~ing (DP) which generates an optimal 
(feed-back) control u*(x) by estimating the value function (VF), defined as the 
maximal value of the functional J as a function of initial state x : 

Vex) = sup J(x; u(.). 
u( .) 

(2) 

In the RL approach, the state dynamics is unknown from the system ; the only 
available information for learning the optimal control is the reinforcement obtained 
at the current state. Here we propose a model-based algorithm, i.e. that learns 
on-line a model of the dynamics and approximates the value function by successive 
iterations. 

Section 2 states the Hamilton-Jacobi-Bellman equation and use a Finite-Difference 
(FD) method derived from Kushner [Kus90] for generating a convergent approxi­
mation scheme. In section 3, we propose a RL algorithm based on this scheme and 
prove its convergence to the VF in appendix A. 

2 A Finite Difference scheme 

Here, we state a second-order nonlinear differential equation (obtained from the DP 
principle, see [FS93J) satisfied by the value function, called the Hamilton-Jacobi­
Bellman equation. 

Let the d x d matrix a = a.a' (with' the transpose of the matrix). We consider 
the uniformly pambolic case, Le. we assume that there exists c > 0 such that 
V$ E 0, Vu E U, Vy E IRd ,2:t,j=l aij(x, U)YiYj 2: c1lY112. Then V is C2 (see [Kry80J). 
Let Vx be the gradient of V and VXiXj its second-order partial derivatives. 

Theorem 1 (Hamilton-Jacohi-Bellman) The following HJB equation holds : 

Vex) In 'Y + sup [rex, u) + Vx(x).J(x, u) + ! 2:~j=l aij VXiXj (x)] = 0 for x E 0 
uEU 

Besides, V satisfies the following boundary condition: Vex) = R(x) for x E 80. 
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Remark 1 The challenge of learning the VF is motivated by the fact that from V, 
we can deduce the following optimal feed-back control policy: 

u*(x) E arg sup [r(x, u) + Vx(x).f(x, u) + ! L:7,j=l aij VXiXj (x)] 
uEU 

In the following, we assume that 0 is bounded. Let eI, ... , ed be a basis for JRd. 
Let the positive and negative parts of a function 4> be : 4>+ = ma.x(4),O) and 
4>- = ma.x( -4>,0). For any discretization step 8, let us consider the lattices: 8Zd = 

{8. L:~=1 jiei} where j}, ... ,jd are any integers, and ~6 = 8Zd n O. Let 8~6, the 

frontier of ~6 denote the set of points {~ E 8Zd \ 0 such that at least one adjacent 
point ~ ± 8ei E ~6} (see figure 1). 

Let U6 cUbe a finite control set that approximates U in the sense: 8 ~ 8' => 
U6' C U6 and U6U6 = U. Besides, we assume that: Vi = l..d, 

(3) 

By replacing the gradient Vx(~) by the forward and backward first-order finite­
difference quotients: ~;, V(~) = l [V(~ ± 8ei) - V(~)l and VXiXj (~) by the second­
order finite-difference quotients: 

~XiXi V(~) -b [V(~ + 8ei) + V(,' - 8ei) - 2V(O] 

~;iXj V(~) = 2P[V(~ + 8ei ± 8ej) + V(~ - 8ei =F 8ej) 

-V(~ + 8ei) - V(~ - 8ei) - V(~ + 8ej) - V(~ - 8ej) + 2V(~)] 
in the HJB equation, we obtain the following : for ~ E :£6, 

V6(~)In,+SUPUEUh {r(~,u) + L:~=1 [f:(~,u)'~~iV6(~) - fi-(~,U)'~;iV6(~) 

+ aii (~.u) ~ . . V(C) + " . . (at; (~,'U) ~ + . V(C) _ a~ (~,'U) ~ - . . V(C))] } = 0 
2 X,X,'" wJ'l=~ 2 x,x.1'" 2 x,xJ '" 

Knowing that (~t In,) is an approximation of ( ,l:l.t -1) as ~t tends to 0, we deduce: 

V6(~) SUPuEUh [,"'(~'U)L(EEbP(~,U,()V6«()+T(~,u)r(~,u)] (4) 

with T(~, u) (5) 

which appears as a DP equation for some finite Markovian Decision Process (see 
[Ber87]) whose state space is ~6 and probabilities of transition: 

p(~,u,~ ± 8ei) 

p(~, u, ~ + 8ei ± 8ej) 

p(~,u,~ - 8ei ± 8ej) 

p(~,u,() 

"'~~r) [28Ift(~, u)1 + aii(~' u) - Lj=l=i laij(~, u)l] , 
"'~~r)a~(~,u)fori=f:j, (6) 

"'~~r)a~(~,u) for i =f: j, 

o otherwise. 

Thanks to a contraction property due to the discount factor" there exists a unique 
solution (the fixed-point) V to equation (4) for ~ E :£6 with the boundary condition 
V6(~) = R(~) for ~ E 8:£6. The following theorem (see [Kus90] or [FS93]) insures 
that V 6 is a convergent approximation scheme. 
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Theorem 2 (Convergence of the FD scheme) V D converges to V as 8 1 0 : 

lim /)10 VD(~) = Vex) un~formly on 0 
~-x 

Remark 2 Condition (3) insures that the p(~, u, () are positive. If this condition 
does not hold, several possibilities to overcome this are described in [Kus90j. 

3 The reinforcement learning algorithm 

Here we assume that f is bounded from below. As the state dynami,:s (J and a) 
is unknown from the system, we approximate it by building a model f and a from 
samples of trajectories Xk(t) : we consider series of successive states Xk = Xk(tk) 
and Yk = Xk(tk + Tk) such that: 

- "It E [tk, tk + Tk], x(t) E N(~) neighbourhood of ~ whose diameter is inferior to 
kN.8 for some positive constant kN, 

- the control u is constant for t E [tk, tk + Tk], 

- T k satisfies for some positive kl and k2, 

(7) 

Then incrementally update the model : 

.1 ",n Yk - Xk 
n ~k=l Tk 

an(~,u) 
1 n (Yk - Xk - Tk.fn(~, u)) (Yk - Xk - Tk·fn(~, u))' 
-;;; Lk=l Tk (8) 

and compute the approximated time T( x, u) ~d the approximated probabilities of 
transition p(~, u, () by replacing f and a by f and a in (5) and (6). 

We obtain the following updating rule of the V D -value of state ~ : 

V~+l (~) = sUPuEU/) [,~/:(x,u) L( p(~, u, ()V~(() + T(x, u)r(~, u)] (9) 

which can be used as an off-line (synchronous, Gauss-Seidel, asynchronous) or on­
time (for example by updating V~(~) as soon as a trajectory exits from the neigh­
bourood of ~) DP algorithm (see [BBS95]). 

Besides, when a trajectory hits the boundary [JO at some exit point Xk(T) then 
update the closest state ~ E [JED with: 

(10) 

Theorem 3 (Convergence of the algorithm) Suppose that the model as well 
as the V D -value of every state ~ E :ED and control u E UD are regularly updated 
(respectively with (8) and (9)) and that every state ~ E [JED are updated with (10) 
at least once. Then "Ie> 0, :3~ such that "18 ~ ~, :3N, "In 2: N, 

sUP~EE/) IV~(~) - V(~)I ~ e with probability 1 



Reinforcement Learningfor Continuous Stochastic Control Problems 1033 

4 Conclusion 

This paper presents a model-based RL algorithm for continuous stochastic control 
problems. A model of the dynamics is approximated by the mean and the covariance 
of successive states. Then, a RL updating rule based on a convergent FD scheme is 
deduced and in the hypothesis of an adequate exploration, the convergence to the 
optimal solution is proved as the discretization step 8 tends to 0 and the number 
of iteration tends to infinity. This result is to be compared to the model-free RL 
algorithm for the deterministic case in [Mun97]. An interesting possible future 
work should be to consider model-free algorithms in the stochastic case for which a 
Q-Iearning rule (see [Wat89]) could be relevant. 

A Appendix: proof of the convergence 

Let M f ' Ma, M fr. and Ma .• be the upper bounds of j, a, f x and 0' x and m f the lower 
bound of f. Let EO = SUP€EI:h !V0 (';) - V(';)I and E! = SUP€EI:b \V~(';) - VO(.;)\. 

A.I Estimation error of the model fn and an and the probabilities Pn 

Suppose that the trajectory Xk(t) occured for some occurence Wk(t) of the brownian 
motion: Xk(t) = Xk + f!k f(Xk(t),u)dt + f!" a(xk(t),U)dwk. Then we consider a 
trajectory Zk (t) starting from .; at tk and following the same brownian motion: 

Zk(t) ='; + fttk. f(Zk(t), u)dt + fttk a(zk(t), U)dWk' 

Let Zk = Zk(tk + Tk). Then (Yk - Xk) - (Zk -.;) = ftk [f(Xk(t), u) - f(Zk(t), u)] dt + 

ftt:.+Tk [a(xk(t), u) - a(zk(t), u)J dWk. Thus, from the C1 property of f and a, 

II(Yk - Xk) - (Zk - ';)11 ~ (Mf'" + M aJ.kN.Tk.8. (11) 

The diffusion processes has the following property ~ee for example the ItO-Taylor 
majoration in [KP95j) : Ex [ZkJ = ';+Tk.f(';, U)+O(Tk) which, from (7), is equivalent 

to: Ex [z~:g] = j(';,u) + 0(8). Thus from the law of large numbers and (11): 

li~-!~p Ilfn(';, u) - f(';, u)11 - li;;:s~p II~ L~=l [Yk;kX& - ¥.] II + 0(8) 

(Mf:r: + M aJ·kN·8 + 0(8) = 0(8) w.p. 1 (12) 

Besides, diffusion processes have the following property (again see [KP95J): 
Ex [(Zk -.;) (Zk - .;)'] = a(';, U)Tk + f(';, u).f(';, U)'.T~ + 0(T2) which, from (7), 

is equivalent to: Ex [(Zk-€-Tkf(S'U)~(kZk-S-Tkf(S'U»/] = a(';, u) + 0(82). Let rk = 

Zk -.; - Tkf(';, u) and ik = Yk - Xk - Tkfn(';, u) which satisfy (from (11) and (12» : 

Ilrk - ikll = (Mf:r: + M aJ.Tk.kN.8 + Tk.o(8) (13) 

From the definition of Ci;;(';,u), we have: Ci;;(';,u) - a(';,u) = ~L~=l '\:1.' -
Ex [r~':k] + 0(82 ) and from the law of large numbers, (12) and (13), we have: 

li~~~p 11~(';,u) - a(';,u)11 = li~-!~p II~ L~=l rJ./Y - r~':k II + 0(82 ) 

Ilik -rkllli:!s!p~ fl (II~II + II~II) +0(82 ) = 0(82 ) 
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"In(';, u) - I(';, u)" ~ kf·8 w.p. 1 

1Ill;;(';, u) - a(';, u)1I ~ ka .82 w.p. 1 
(14) 

Besides, from (5) and (14), we have: 

1 (c ) _ - (c )1 < d.(k[.6 2+d.k,,62 ) J:2 < k J:2 T r.",U Tn r.",U _ (d.m, .6)2 U _ T'U (15) 

and from a property of exponential function, 

I,T(~.u) _ ,7' .. (€ .1£) I = kT.In ~ .82 . (16) 

We can deduce from (14) that: 

. 1 ( ) -( )1 (2.6.Mt+d.Ma)(2.kt+d.k,,)62 k J: limsupp';,u,( -Pn';,u,( ~ 6mr(2.k,+d.ka)62 S; puw.p.l 
n-+oo 

(17) 

A.2 Estimation of IV~+l(';) - V6(.;) 1 

Mter having updated V~(';) with rule (9), let A denote the difference 
IV~+l(';) - V6(.;) I. From (4), (9) and (8), 

A < ,T(€.U) L: [P(';, u, () - p(.;, u, ()] V6 (() + ( ,T(€.1£) - ,7'(~'1£») L p(.;, u, () V 6 (() 
( ( 

+,7' (€.u) . L:p(.;, u, () [V6(() - V~(()] + L:p(.;, u, ().T(';, u) [r(';, u) - F(';, u)] 
( ( 

+ L:( p(.;, u, () [T(';, u) - T(';, u)] r(';, u) for all u E U6 

As V is differentiable we have : Vee) = V(';) + VX ' (( -.;) + 0(1I( - ';11). Let 
us define a linear function V such that: Vex) = V(';) + VX ' (x - ';). Then 
we have: [P(';, u, () - p(.;, u, ()] V6(() = [P(';, u, () - p(.;, u, ()] . [V6(() - V(()] + 
[P(';,u,()-p(';,u,()]V((), thus: L:([p(';,u,()-p(';,u,()]V6(() = kp .E6.8 + 
L([P(';,U,()-p(.;,u,()] [V(() +0(8)] = [V(7J)-VUD] + kp .E6.8 + 0(8) = 

[V(7J) - V(1j)] + 0(8) with: 7J = L:( p(';, u, () (( -.;) and 1j = L:( p(.;, u, () (( - .;). 

Besides, from the convergence of the scheme (theorem 2), we have E6.8 = 
0(8). From the linearity of V, IV(() - V(Z) I ~ II( -ZII·Mv", S; 2kp 82 . Thus 

IL( [P(';, u, () - p(.;, u, ()] V6 (() I = 0(8) and from (15), (16) and the Lipschitz prop­

erty of r, 

A = 1'l'(€'U), L:( p(.;, u, () [V6(() - V~ (()] 1+ 0(8). 

As ,..,.7'(€.u) < 1 - 7'(€.U) In 1 < 1 _ T(€.u)-k.,.62 In 1 < 1 _ ( 6 _ !ix..82) In 1 
I - 2 'Y - 2 'Y - 2d(M[+d.M,,) 2 'Y ' 

we have: 
A = (1 - k.8)E~ + 0(8) (18) 

with k = 2d(M[~d.M,,). 
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A.3 A sufficient condition for sUP€EE~ IV~(~) - V6(~)1 :S C2 

Let us suppose that for all ~ E ~6, the following conditions hold for some a > 0 

E~ > C2 =} IV~+I(O - V6(~)1 :S E~ - a (19) 

E~ :S c2=}IV~+I(~)_V6(~)I:Sc2 (20) 

From the hypothesis that all states ~ E ~6 are regularly updated, there exists an 
integer m such that at stage n + m all the ~ E ~6 have been updated at least 
once since stage n. Besides, since all ~ E 8C6 are updated at least once with 
rule (10), V~ E 8C6, IV~(~) - V6(~)1 = IR(Xk(T)) - R(~)I :S 2.LR.8 :S C2 for any 
8 :S ~3 = 2~lR' Thus, from (19) and (20) we have: 

E! > C2 =} E!+m :S E! - a 

E! :S C2 =} E!+m :S C2 

Thus there exists N such that: Vn ~ N, E~ :S C2. 

A.4 Convergence of the algorithm 

Let us prove theorem 3. For any c > 0, let us consider Cl > 0 and C2 > 0 such that 
Cl +C2 = c. Assume E~ > £2, then from (18), A = E! - k.8'£2+0(8) :S E~ -k.8.~ 
for 8 :S ~3. Thus (19) holds for a = k.8.~. Suppose now that E~ :S £2. From (18), 
A :S (1 - k.8)£2 + 0(8) :S £2 for 8 :S ~3 and condition (20) is true. 

Thus for 8 :S min { ~1, ~2, ~3}, the sufficient conditions (19) and (20) are satisfied. 
So there exists N, for all n ~ N, E~ :S £2. Besides, from the convergence of the 
scheme (theorem 2), there exists ~o st. V8:S ~o, sUP€EE~ 1V6(~) - V(~)I :S £1· 

Thus for 8 :S min{~o, ~1, ~2, ~3}, "3N, Vn ~ N, 

sup IV~(~) - V(~)I :S sup IV~(~) - V6(~)1 + sup 1V6(~) - V(~)I :S £1 + c2 = £. 
€EE6 €EEh €EE6 
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We discuss the development of a Multi-Layer Percept ron neural 
network classifier for use in preoperative differentiation between 
benign and malignant ovarian tumors. As the Mean Squared clas­
sification Error is not sufficient to make correct and objective as­
sessments about the performance of the neural classifier, the con­
cepts of sensitivity and specificity are introduced and combined 
in Receiver Operating Characteristic curves. Based on objective 
observations such as sonomorphologic criteria, color Doppler imag­
ing and results from serum tumor markers, the neural network is 
able to make reliable predictions with a discriminating performance 
comparable to that of experienced gynecologists. 

1 Introd uction 

A reliable test for preoperative discrimination between benign and malignant ovar­
ian tumors would be of considerable help to clinicians. It would assist them to select 
patients for whom minimally invasive surgery or conservative management suffices 
versus those for whom urgent referral to a gynecologic oncologist is needed. 

We discuss the development of a neural network classifier/diagnostic tool. The neu­
ral network was trained by supervised learning, based on data from 191 thoroughly 
examined patients presenting with ovarian tumors of which 140 were benign and 51 
malignant. As inputs to the network we chose indicators that in recent studies have 
proven their high predictive value [1, 2, 3]. Moreover, we gave preference to those 
indicators that can be obtained in an objective way by any gynecologist. Some of 
these indicators have already been used in attempts to make one single protocol or 
decision algorithm [3, 4]. 
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In order to make reliable assessments on the practical performance of the classifier, 
it is necessary to work with other concepts than Mean Squared classification Error 
(MSE), which is traditionally used as a measure of goodness in the training of a 
neural network. We will introduce notions as specificity and sensitivity and combine 
them into Receiver Operating Characteristic (ROC) curves. The use of ROC-curves 
is motivated by the fact that they are independent of the relative proportion of the 
various output classes in the sample population. This enables an objective validation 
of the performance of the classifier. We will also show how, in the training of the 
neural network, MSE optimization with gradient methods can be refined and/or 
replaced with the help of ROC-curves and simulated annealing techniques. 

The paper is organized as follows. In Section 2 we give a brief description of the 
selected input features. In Section 3 we state some drawbacks to the MSE criterion 
and introduce the concepts of sensitivity, specificity and ROC-curves. Section 4 
then deals with the technicalities of training the neural network. In Section 5 we 
show the results and compare them to human performance. 

2 Data acquisition and feature selection 

The data were derived from a study group of 191 consecutive patients who were 
referred to a single institution (University Hospitals Leuven, Belgium) from August 
1994 to August 1996. Table 1 lists the different indicators which were considered, 
together with their mean value and standard deviations or together with the relative 
presence in cases of benign and malignant tumors. 

Table 1 Indicator Benign Malignant 
Demographic Age 49.3 ± 16.0 58.3 ± 14.3 

Postmenopausal 40% 70.6% 
Serum marker CA 125 (log) 2.8±1.1 5.2 ± 1.9 
CD! Blood flow present 72.9% 100% 
Morphologic Abdominal fluid 12.1% 52.9% 

Bilateral mass 11.4% 35.3% 
Unilocular cyst 42.1% 5.9% 
Multiloc/solid cyst 16.4% 49.0% 
Smooth wall 58.6% 2.0% 
Irregular wall 32.1% 76.5% 
Papillations 7.9% 74.5% 

Table 1: Demographic, serum marker, color Doppler imaging and morphologic indicators. 
For the continuous valued features the mean and standard deviation for each class are 
reported. For binary valued indicators, the last two columns give the presence of the 
feature in both classes e.g. only 2% of malignant tumors had smooth walls. 

First, all patients were scanned with ultrasonography to obtain detailed gray-scale 
images of the tumors. Every tumor was extensively examined for its morphologic 
characteristics. Table 1 lists the selected morphologic features: presence of ab­
dominal fluid collection, papillary structures (> 3mm), smooth internal walls, wall 
irregularities, whether the cysts were unilocular, multilocular-solid and/or present 
on both pelvic sides. All outcomes are binary valued: every observation relates to 
the presence (1) or absence (0) of these characteristics. 

Secondly, all tumors were entirely surveyed by color Doppler imaging to detect 
presence or absence of blood flow within the septa, cyst walls, solid tumor areas or 
ovarian tissue. The outcome is also binary valued (1/0). 
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Thirdly, in 173 out of the total of 191 patients, serum CA 125 levels were measured, 
using CA 125 II immunoradiometric assays (Centocor, Malvern, PA). The CA 125 
antigen is a glycoprotein that is expressed by most epithelial ovarian cancers. The 
numerical value gives the concentration in U Iml. Because almost all values were 
situated in a small interval between 0 and 100, and because a small portion took 
values up to 30,000, this variable was rescaled by taking its logarithm. 

Since age and menopausal status of the patient are considered to be highly relevant, 
these are also included. The menopausal score is -1 for premenopausal, + 1 for 
postmenopausal. A third class of patients were assigned a 0 value. These patients 
had had an hysterectomy, so no menopausal status could be appointed to them. 

It is beyond the scope of this paper to give a complete account of the meaning of 
the different features that are used or the way in which the data were acquired. 
We will limit ourselves to this short description and refer the reader to [2, 3] and 
gynecological textbooks for a more detailed explanation. 

3 Receiver Operating Characteristics 

3.1 Drawbacks to Mean Squared classification Error 

Let us assume that we use a one-hidden-Iayer feed-forward NN with m inputs xl, 
nh hidden neurons with the tanh(.) as activation function, and one output i1k, 

nh m 

Yk(B) = L Wj tanh(L VijX~ + {3j)' (1) 
j=l i=l 

parameterized by the vector 0 consisting of the network's weights Wj and Vij and 
bias terms {3j. The cost function is often chosen to be the squared difference between 
the desired dk and the actual response Yk. averaged over all N samples [12], 

1 N 
J(O) = N 2:)dk - Yk(9))2. (2) 

k=l 

This type of cost function is continuous and differentiable, so it can be used in 
gradient based optimization techniques such as steepest descent (back-propagation), 
quasi-Newton or Levenberg-Marquardt methods [8, 9, 11, 12]. However there are 
some drawbacks to the use of this type of cost function. 

First of all, the MSE is heavily dependent on the relative proportion of 
the different output classes in the training set. In our dichotomic case this 
can easily be demonstrated by writing the cost function, with superscripts b and m 
respectively meaning benign and malignant, as 

J(O) Nb 1 ""Nb (db )2 Nm 1 ""Nm (dm )2 
- Nb + Nm Nb wk=l k - Yk + Nb + Nm N m wk=l k - Yk (3) 
~ ~ 

,\ (1-,\) 

If the relative proportion in the sample population is not representative for reality, 
the .x parameter should be adjusted accordingly. In practice this real proportion is 
often not known accurately or one simply ignores the meaning of .x and uses it as a 
design parameter in order to bias the accuracy towards one of the output classes. 

A second drawback of the MSE cost function is that it is not very in­
formative towards practical usage of the classification tool. A clinician is 
not interested in the averaged deviation from desired numbers, but thinks in terms 
of percentages found, missed or misclassified. In the next section we will introduce 
the concepts of sensitivity and specificity to express these more practical measures. 
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3.2 Sensitivity, specificity and ROC-curves 

If we take the desired response to be 0 for benign and 1 for malignant cases, the 
way to make clear cut (dichotomic) decisions is to compare the numerical outcome 
of the neural network to a certain threshold value T between 0 and 1. When the 
outcome is above the threshold T, the prediction is said to be positive. Otherwise the 
prediction is said to be negative. With this convention, we say that the prediction 
was 

True Positive (TP) 
True Negative (TN) 
False Positive (FP) 
False Negative (FN) 

if the prediction was positive when the sample was malignant. 
if the prediction was negative when the sample was benign. 
if the prediction was positive when the sample was benign. 
if the prediction was negative when the sample was malignant. 

To every of the just defined terms T P, TN, F P and F N, a certain subregion of the 
total sample space can be associated, as depicted in Figure 1. In the same sense, 
we can associate to them a certain number counting the samples in each subregion. 
We can then define sensitivity as Tl:FN' the proportion of malignant cases that 

Total opulation 

¥~li~nant 
.... 
. " ... 

TP 

- '-

, 
\ , , 
" 

Figure 1: The concepts of true and false positive and negative illustrated. The dashed 
area indicates the malignant cases in the total sample population. The positive prediction 
of an imperfect classification (dotted area) does not fully coincide with this sub area. 

are predicted to be malignant and specificity as F::r N' the proportion of benign 
cases that are predicted to be benign. The false positive rate is I-specificity. 

When varying the threshold T, the values of T P, TN, F P, F N and therefore 
also sensitivity and specificity, will change. A low threshold will detect almost all 
malignant cases at the cost of many false positives. A high threshold will give 
less false positives, but will also detect less malignant cases. Receiver Operating 
Characteristic (ROC) curves are a way to visualize this relationship. The plot gives 
the sensitivity versus false positive rate for varying thresholds T (e.g. Figure 2). 

The ROC-curve is useful and widely used device for assessing and comparing the 
value of tests [5, 7]. The proportion of the whole area of the graph which lies below 
the ROC-curve is a one-value measure of the accuracy of a test [6]. The higher 
this proportion, the better the test. Figure 2 shows the ROC-curves for two simple 
classifiers that use only one single indicator. (Which means that we classify a tumor 
being malignant when the value of the indicator rises above a certain value.) It is 
seen that the CA 125 level has high predictive power as its ROC-curve spans 87.5% 
of the total area (left Figure 2). For the age parameter, the ROC-curve spans 
only 65.6% (right Figure 2). As indicated by the horizontal line in the plot, a CA 
125 level classification will only misclassify 15% of all benign cases to reach a 80% 
sensitivity, whereas using only age, one would then misclassify up to 50% of them. 
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Figure 2: The Receiver Operating Characteristic (ROC) curve is the plot of the sensi­
tivity versus the false positive rate of a classifier for varying thresholds used. Only single 
indicators (left: CA 125, right: age) are used for these ROC-curlVes. The horizontal line 
marks the 80% specificity level. 

Since for every set of parameters of the neural network the area under the ROC­
curve can be calculated numerically, this one-value measure can also be used for 
supervised training, as will be shown in the next Section. 

4 Simulation results 

4.1 Inputs and architecture 

The continuous inputs were standardized by subtracting their mean and dividing 
by their standard deviation (both calculated over the entire population). Binary 
valued inputs were left unchanged. The desired outputs were labeled 0 for benign 
examples, 1 for malignant cases. The data set was split up: 2/3 of both benign and 
malignant samples were randomly selected to form the training set. The remaining 
examples formed the test set. The ratio of benign to all examples is >. ~ j. 
Since the training set is not large, there is a risk of overtraining when too many 
parameters are used. We will limit the number of hidden neurons to nh = 3 or 5. 
As the CA 125 level measurement is more expensive and time consuming, we will 
investigate two different classifiers: one which does use the CA 125 level and one 
which does not. The one-hidden-Iayer MLP architectures that are used, are 11-3-1 
and 10-5-1. A tanh(.) is taken for the activation function in the hidden layer. 

4.2 Training 

A first way of training was MSE optimization using the cost function (3) . By taking 
>. = ~ in this expression, the role of malignant examples is more heavily weighted. 
The parameter vector e was randomly initialized (zero mean Gaussian distribution, 
standard deviation a = 0.01). Training was done using a quasi-Newton method with 
BFGS-update of the Hessian (fminu in Matlab) [8, 9]. To prevent overtraining, 
the training was stopped before the MSE on the test set started to rise. Only few 
iterations (~ 100) were needed. 

A second way of training was through the use of the area spanned by the ROC-curve 
of the classifier and simulated annealing techniques [10]. The area-measure AROC 

was numerically calculated for every set of trial parameters: first the sensitivity 
and false positive rate were calculated for 1000 increasing values of the threshold 
T between 0 and 1, which gave the ROC-curve; secondly the area AROC under the 
curve was numerically calculated with the trapezoidal integration rule. 
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We used Boltzmann Simulated Annealing to maximize the ROC-area. At time 
k a trial parameter set of the neural network OHl is randomly generated in the 
neighborhood of the present set Ok (Gaussian distribution, a = O.OO~. The trial 
set 8H1 is always accepted if the area Af.2? 2: Afoc. If Af'?? < Ak OC, Ok+! is 
accepted if 

A r:g? - A r;oc 
( ROC )/T. 

e Ak > Q 

with Q a uniformly distributed random variable E [0,1] and Te the temperature. As 
cooling schedule we took 

Te = 1/(100 + 10k), 

so that the annealing was low-temperature and fast-cooling. The optimization was 
stopped before the ROC-area calculated for the test set started to decrease. Only 
a few hundred annealing epochs were allowed. 

4.3 Results 

Table 2 states the results for the different approaches. One can see that adding the 
CA 125 serum level clearly improves the classifier's performance. Without it, the 
ROC-curve spans about 96.5% of the total square area of the plot, whereas with 
the CA 125 indicator it spans almost 98%. Also, the two training methods are seen 
to give comparable results. Figure 3 shows the ROC-curve calculated for the total 
population for the 11-3-1 MLP case, trained with simulated annealing 

Table 2 Training set Test set Total population 
10-5-1 MLP, MSE 96.7% 96.4% 96.5% 
10-5-1 MLP, SA 96.6% 96.2% 96.4% 
11-3-1 MLP, MSE 97.9% 97.4% 97.7% 
11-3-1 MLP, SA 97.9% 97.5% 97.8% 

Table 2: For the two architectures (10-5-1 and 11-3-1) of the MLP and for the gradient 
(MSE) and the simulated annealing (SA) optimization techniques, this table gives the 
resulting areas under the ROC-curves . 

.. 
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Figure 3: ROC-curves of 11-3-1 MLP (with CA 125 level indicator), trained with simulated 
annealing. The curve, calculated for the total population, spans 97.8% of the total region. 

All patients were examined by two gynecologists, who gave their subjective impres­
sions and also classified the ovarian tumors into (probably) benign and malignant. 
Histopathological examinations of the tumors afterwards showed these gynecologists 
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to have a sensitivity up to 98% and a false positive rate of 13% and 12% respec­
tively. As can be seen in Figure 3, the 11-3-1 MLP has a similar performance. For 
a sensitivity of 98%, its false positive rate is between 10% and 15%. 

5 Conclusion 

In this paper we have discussed the development of a Multi-Layer Perceptron neural 
network classifier for use in preoperative differentiation between benign and malig­
nant ovarian tumors. To assess the performance and for training the classifiers, the 
concepts of sensitivity and specificity were introduced and combined in Receiver 
Operating Characteristic curves. Based on objective observations available to ev­
ery gynecologist, the neural network is able to make reliable predictions with a 
discriminating performance comparable to that of experienced gynecologists. 
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