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Abstract 

We derive a learning algorithm for inferring an overcomplete basis 
by viewing it as probabilistic model of the observed data. Over­
complete bases allow for better approximation of the underlying 
statistical density. Using a Laplacian prior on the basis coefficients 
removes redundancy and leads to representations that are sparse 
and are a nonlinear function of the data. This can be viewed as 
a generalization of the technique of independent component anal­
ysis and provides a method for blind source separation of fewer 
mixtures than sources. We demonstrate the utility of overcom­
plete representations on natural speech and show that compared 
to the traditional Fourier basis the inferred representations poten­
tially have much greater coding efficiency. 

A traditional way to represent real-values signals is with Fourier or wavelet bases. 
A disadvantage of these bases, however, is that they are not specialized for any 
particular dataset. Principal component analysis (PCA) provides one means for 
finding an basis that is adapted for a dataset, but the basis vectors are restricted 
to be orthogonal. An extension of PCA called independent component analysis 
(Jutten and Herault, 1991; Comon et al., 1991; Bell and Sejnowski, 1995) allows 
the learning of non-orthogonal bases. All of these bases are complete in the sense 
that they span the input space, but they are limited in terms of how well they can 
approximate the dataset's statistical density. 

Representations that are overcomplete, i. e. more basis vectors than input variables, 
can provide a better representation, because the basis vectors can be specialized for 
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a larger variety of features present in the entire ensemble of data. A criticism of 
overcomplete representations is that they are redundant, i.e. a given data point may 
have many possible representations, but this redundancy is removed by the prior 
probability of the basis coefficients which specifies the probability of the alternative 
representations. 

Most of the overcomplete bases used in the literature are fixed in the sense that 
they are not adapted to the structure in the data. Recently Olshausen and Field 
(1996) presented an algorithm that allows an overcomplete basis to be learned. This 
algorithm relied on an approximation to the desired probabilistic objective that had 
several drawbacks, including tendency to breakdown in the case of low noise levels 
and when learning bases with higher degrees of overcompleteness. In this paper, we 
present an improved approximation to the desired probabilistic objective and show 
that this leads to a simple and robust algorithm for learning optimal overcomplete 
bases. 

1 Inferring the representation 

The data, X 1 :L ' are modeled with an overcomplete linear basis plus additive noise: 

x = AS+i (1) 

where A is an L x M matrix, whose columns are the basis vectors, where M ~ L . 
We assume Gaussian additive noise so that 10gP(xIA, s) ()( -A(X - As)2/2, where 
A = 1/(12 defines the precision of the noise. 

The redundancy in the overcomplete representation is removed by defining a density 
for the basis coefficients, P(s), which specifies the probability of the alternative 
representations. The most probable representation, 5, is found by maximizing the 
posterior distribution 

s = maxP(sIA,x) = maxP(s)P(xIA,s) 
8 8 

(2) 

P(s) influences how the data are fit in the presence of noise and determines the 
uniqueness of the representation. In this model, the data is a linear function of 
s, but s is not, in general, a linear function of the data. IT the basis function is 
complete (A is invertible) then, assuming broad priors and low noise, the most 
probable internal state can be computed simply by inverting A. In the case of an 
overcomplete basis, however, A can not be inverted. Figure 1 shows how different 
priors induce different representations. 

Unlike the Gaussian prior, the optimal representation under the Laplacian prior 
cannot be obtained by a simple linear operation. One approach for optimizing sis 
to use the gradient of the log posterior in an optimization algorithm. An alternative 
method for finding the most probable internal state is to view the problem as the 
linear program: min 1 T s such that As = x. This can be generalized to handle both 
positive and negative s and solved efficiently and exactly with interior point linear 
programming methods (Chen et al., 1996) . 
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Figure 1: Different priors induce different representations. (a) The 2D data distribution 
has three main axes which form an overcomplete representation. The graphs marked "L2" 
and "L1" show the optimal scaled basis vectors for the data point x under the Gaussian 
and Laplacian prior, respectively. Assuming zero noise, a Gaussian for P{s) is equivalent 
to finding the exact fitting s with minimum L2 norm, which is given by the pseudoinverse 
s = A+x. A Laplacian prior (P{Sm) ex: exp[-OlsmlJ) yields the exact fit with minimum L1 
norm, which is a nonlinear operation which essentially selects a subset of the basis vectors 
to represent the data (Chen et al., 1996). The resulting representation is sparse. (b) A 
64-sample segment of speech was fit to a 2x overcomplete Fourier representation (128 basis 
vectors). The plot shows rank order distribution of the coefficients of s under a Gaussian 
prior (dashed); and a Laplacian prior (solid). Far more significantly positive coefficients 
are required under the Gaussian prior than under the Laplacian prior. 

2 Learning 

The learning objective is to adapt A to maximize the probability of the data which 
is computed by marginalizing over the internal states 

P(xIA) = J ds P(s)P(xIA, s) (3) 

general, this integral cannot be evaluated analytically but can be approximated 
with a Gaussian integral around s, yielding 

log P(xIA) ~ const. + log pes) - ~ (x - As)2 - ~ log det H (4) 

where H is the Hessian of the log posterior at S, given by )'ATA - VVlogP(s). 
To avoid a singularity under the Laplacian prior, we use the approximation 
(logP(sm»)' ~ -8tanh(,8sm) which gives the Hessian full rank and positive de­
terminant. For large ,8 this approximates the true Laplacian prior. A learning rule 
can be obtained by differentiating log P(xIA) with respect to A. 

In the following discussion, we will present the derivations of the three terms in (4) 
and simplifying assumptions that lead to the following simple form of the learning 
rule 

(5) 
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2.1 Deriving V log pes) 

This term specifies how to change A so as to make the probability of the represen­
tation s more probable. IT we assume a Laplacian prior, this component changes A 
to make the representation more sparse. 

We assume pes) = rIm P(Sm). In order to obtain 8sm/8aij, we need to describe 
s as a function of A. If the basis is complete (and we assume low noise), then we 
may simply invert A to obtain s = A -IX. When A is overcomplete, however, there 
is no simple expression, but we may still make an approximation. 

Under priors, the most probable solution, s, will yield at most L non-zero elements. 
In effect, this selects a complete basis from A. Let A represent this reduced basis 
under s. We then have s = A -1(X- €) where s is equal to s with M - L zero-valued 
elements removed. A-I obtained by removing the columns of A corresponding to 
the M - L zero-valued elements of s. This allows us to use results obtained for the 
case when A is invertible. Following MacKay (1996) we obtain 

(6) 

Rewriting in matrix notation we have 

810gP(s) _ A~ -Tv~T 
8A - - zs (7) 

We can use this to obtain an expression in terms of the original variables. We 
simply invert the mapping s ~ s to obtain Z f- z and W T f- A -T (row-wise) with 
Zm = 0 and row m ofWT = 0 if 8m = O. We then have 

8 log P(s) WT T 
8A = - zs (8) 

2.2 Deriving Vex - As)2 

The second term specifies how to change A so as to minimize the data misfit. 
Letting ek = [x - AS]k and using the results and notation from above we have: 

8 A~ 2 ~ ~ 8s, 
-8 .. "2 L-ek = AeiSj + A L-ek L-ak'~ 

a" k k I alJ 

(9) 

= AeiSj + A Lek L -aklWliSj (10) 
k I 

= AeiSj - AeiSj = 0 (11) 

Thus no gradient component arises from the error term. 

2.3 Deriving V log det H 

The third term in the learning rule specifies how to change the weights so as to 
minimize the width of the posterior distribution P(xIA) and thus increase the 
overall probability of the data. An element of H is defined by Hmn = Cmn + bmn 
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where Cmn = Ek Aakmakn and bmn = [-V'V' log P(s)]mn. This gives 

8logdetH _ ""H-1 [8emn + 8bmn ] 
8a ·· - ~ nm 8a .. 8a·· 

~ mn U ~ 

(12) 

First considering 8Cmn/8aij, we can obtain 

L H~~ ~~~ = L H~;.\aim + L Hj~.\aim + Hj/ 2Aaij (13) 
mn ~3 m:f.j m:f.j 

Using the fact that H~; = Hj~ due to the symmetry of the Hessian, we have 

(14) 

Next we derive 8bmn/8aij. We have that V'V'logP(s) is diagonal, because we 
assume pes) = nm P(sm). Letting 2Ym = H~!n8bmm/8sm and using the result 
under the reduced representation (6) we can obtain 

(15) 

2.4 Stabilizing and simplifying the learning rule 

Putting the terms together yields a problematic expression due to the matrix in­
verses. This can be alleviated by multiplying the gradient by an appropriate positive 
definite matrix, which rescales the gradient components but preserves a direction 
valid for optimization. Noting that ATWT = I we have 

(16) 

H'\ is large (low noise) then the Hessian is dominated by AATA and we have 

(17) 

The vector y hides a computation involving the inverse Hessian. IT the basis vectors 
in A are randomly distributed, then as the dimensionality of A increases the basis 
vectors become approximately orthogonal and consequently the Hessian becomes 
approximately diagonal. It can be shown that if log pes) and its derivatives are 
smooth, Ym vanishes for large A. Combining the remaining terms yields equation 
(5). Note that this rule contains no matrix inverses and the vector z involves only 
the derivative of the log prior. 

In the case where A is square, this form of the rule is similar to the natural gradient 
independent component analysis (ICA) learning rule (Amari et al., 1996). The 
difference in the more general case where A is rectangular is that s must maximize 
the posterior distribution P(slx, A) which cannot be done simply with the filter 
matrix as in standard ICA algorithms. 
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3 Examples 

More sources than inputs. In these 2D examples, the bases were initialized 
to random, normalized vectors. The coefficients were solved using BPMPD and 
publicly available interior point linear programming package (Meszaros, 1997) which 
gives the most probable solution under the Laplacian prior assuming zero noise. 
The algorithm was run for 30 iterations using equation (5) with a stepsize of 0.001 
and a batchsize of 200. Convergence was rapid, typically requiring less than 20 
iterations. In all cases, the direction of the learned vectors matched those of the 
true generating distribution; the magnitude was estimated less precisely, possibly 
due to the approximation oflogP(xIA). This can be viewed as a source separation 
problem, but true separation will be limited due to the projection of the sources 
down to a smaller subspace which necessarily loses information . 

. ' '. ~ 

Figure 2: Examples illustrating the fitting of 2D distributions with overcomplete bases. 
The first example is equivalent to 3 sources mixed into 2 channels; the second to 4 sources 
mixed into 2 channels. The data in both examples were generated from the true basis A 
using x = As with the elements of s distributed according to an exponential distribution 
with unit mean. Identical results were obtained by drawing s from a Laplacian prior 
(positive and negative coefficients). The overcomplete bases allow the model to capture 
the true underlying statistical structure in the 2D data space. 

Overcomplete representations of speech. Speech data were obtained from the 
TIMIT database, using a single speaker was speaking ten different example sen­
tences with no preprocessing. The basis was initialized to an overcomplete Fourier 
basis. A conjugate gradient routine was used to obtain the most probable basis 
coefficients. The stepsize was gradually reduced over 10000 iterations. Figure 3 
shows that the learned basis is quite different from the Fourier representation. The 
power spectrum for the learned basis vectors can be multimodal and/or broadband. 
The learned basis achieves greater coding efficiency: 2.19 ± 0.59 bits per sample 
compared to 3.86 ± 0.28 bits per sample for a 2x overcomplete Fourier basis. 

4 Summary 

Learning overcomplete representations allows a basis to better approximate the un­
derlying statistical density of the data and consequently the learned representations 
have better encoding and denoising properties than generic bases. Unlike the case 
for complete representations and the standard ICA algorithm, the transformation 
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Figure 3: An example of fitting a 2x overcomplete representation to segments of from 
natural speech. Each segment consisted of 64 samples, sampled at a frequency of 8000 Hz 
(8 msecs). The plot shows a random sample of 30 of the 128 basis vectors (each scaled to 
full range). The right graph shows the corresponding power spectral densities (0 to 4000 
Hz). 

from the data to the internal representation is non-linear. The probabilistic formu­
lation of the basis inference problem offers the advantages that assumptions about 
the prior distribution on the basis coefficients are made explicit and that different 
models can be compared objectively using log P(xIA). 
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