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Abstract 

We study several statistically and biologically motivated learning 
rules using the same visual environment, one made up of natural 
scenes, and the same single cell neuronal architecture. This allows 
us to concentrate on the feature extraction and neuronal coding 
properties of these rules. Included in these rules are kurtosis and 
skewness maximization, the quadratic form of the BCM learning 
rule, and single cell ICA. Using a structure removal method, we 
demonstrate that receptive fields developed using these rules de­
pend on a small portion of the distribution. We find that the 
quadratic form of the BCM rule behaves in a manner similar to a 
kurtosis maximization rule when the distribution contains kurtotic 
directions, although the BCM modification equations are compu­
tationally simpler. 
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1 INTRODUCTION 

Recently several learning rules that develop simple cell-like receptive fields in a 
natural image environment have been proposed (Law and Cooper, 1994; Olshausen 
and Field, 1996; Bell and Sejnowski, 1997). The details of these rules are different 
as well as their computational reasoning, however they all depend on statistics of 
order higher than two and they all produce sparse distributions. 

In what follows we investigate several specific modification functions that have 
the. general properties of BCM synaptic modification functions (Bienenstock et al., 
1982), and study their feature extraction properties in a natural scene environment. 
Several of the rules we consider are derived from standard statistical measures 
(Kendall and Stuart, 1977), such as skewness and kurtosis, based on polynomial 
moments. We compare these with the quadratic form of BCM (Intrator and Cooper, 
1992), though one should note that this is not the only form that could be used. 
By subjecting all of the learning rules to the same input statistics and retina/LGN 
preprocessing and by studying in detail the single neuron case, we eliminate possible 
network/lateral interaction effects and can examine the properties of the learning 
rules themselves. 

We compare the learning rules and the receptive fields they form, and introduce a 
procedure for directly measuring the sparsity of the representation a neuron learns. 
This gives us another way to compare the learning rules, and a more quantitative 
measure of the concept of sparse' representations. 

2 MOTIVATION 

We use two methods for motivating the use of the particular rules. One comes 
from Projection Pursuit (Friedman, 1987) and the other is Independent Component 
Analysis (Comon, 1994). These methods are related, as we shall see, but they 
provide two different approaches for the current work. 

2.1 EXPLORATORY PROJECTION PURSUIT 

Diaconis and Freedman (1984) show that for most high-dimensional clouds (of 
points), most low-dimensional projections are approximately Gaussian. This find­
ing suggests that important information in the data is conveyed in those directions 
whose single dimensional projected distribution is far from Gaussian. 

Intrator (1990) has shown that a BCM neuron can find structure in the input 
distribution that exhibits deviation from Gaussian distribution in the form of multi­
modality in the projected distributions. This type of deviation is particUlarly useful 
for finding clusters in high dimensional data. In the natural scene environment, 
however, the structure does not seem to be contained in clusters. In this work we 
show that the BCM neuron can still find interesting structure in non-clustered data. 

The most common measures for deviation from Gaussian distribution are skewness 
and. kurtosis which are functions of the first three and four moments of the dis­
tribution respectively. Rules based on these statistical measures satisfy the BCM 
conditions proposed in Bienenstock et aI. (1982), including a threshold-based sta­
bilization. The details of these rules and some of the qualitative features of the 
stabilization are different, however. In addition, there are some learning rules, 
such as the ICA rule of Bell and Sejnowski (1997) and the sparse coding algorithm 
of Olshausen and Field (1995), which have been used with natural scene inputs to 
produce oriented receptive fields. We do not include these in our comparison be-
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cause they are not single cell learning rules, and thus detract from our immediate 
goal of comparing rules with the same input structure and neuronal architecture. 

2.2 INDEPENDENT COMPONENT ANALYSIS 

Recently it has been claimed that the independent components of natural scenes 
are the edges found in simple cells (Bell and Sejnowski, 1997). This was achieved 
through the maximization of the mutual entropy of a set of mixed signals. Others 
(Hyvarinen and Oja, 1996) have claimed that maximizing kurtosis can also lead 
to the separation of mixed signals into independent components. This alternate 
connection between kurtosis and receptive fields leads us into a discussion of ICA. 

Independent Component AnalYSis (ICA) is a statistical signal processing technique 
whose goal is to express a set of random variables as a linear mixture of statistically 
independent variables. The problem of ICA is then to find the transformation from 
the observed mixed signals to the "unmixed" independent sources. The search 
for independent components relies on the fact that a linear mixture of two non­
Gaussian distributions will become more Gaussian than either of them. Thus, 
by seeking projections which maximize deviations from Gaussian distribution, we 
recover the original (independent) signals. This explains the connection of ICA to 
the framework of exploratory projection pursuit. 

3 SYNAPTIC MODIFICATION RULES 

In this section we outline the derivation for the learning rules in this study. Neural 
activity is assumed to be a positive quantity, so for biological plausibility we denote 
by c the rectified activity (T(d . m), where (T( .) is a smooth monotonic function 
with a positive output (a slight negative output is also allowed). (T' denotes the 
derivative of the sigmoidal. The rectification is required for all rules that depend 
on odd moments because these vanish in symmetric distributions such as natural 
scenes. We study the following measures(Kendall and Stuart, 1977, for review) : 

Skewness 1 This measures the deviation from symmetry, and is of the form: 
51 = E[c3]j E1.5[C2]. (1) 

A maximization of this measure via gradient ascent gives 

"V51 = \.5E [c (c - E[c3]jE[c2]) (TId] = \ .5E [c (c - E[c3]jeM) (TId] (2) 
eM eM 

where em is defined as E[c2 ]. 

Skewness 2 Another skewness measure is given by 
52 = E[c3] - E1.5[C2]. (3) 

This measure requires a stabilization mechanism which we achieve by requiring that 
the vector of weights, denoted by m, has norm of 1. The gradient of 52 is 

"V52 = 3E [c2 - cJE[c2]] = 3E [c (c - JeM) (TId] ,II m 11= 1 (4) 

Kurtosis 1 Kurtosis measures deviation from Gaussian distribution mainly in the 
tails of the distribution. It has the form 

Kl = E[c4]jE2[C2] - 3. (5) 
This measure has a gradient of the form 

1 1 
"VKl = -2E [c (c2 - E[c4]jE[c2]) (TId] = -2E [c (c2 - E[c4]jeM) (TId]. (6) 

eM eM 
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Kurtosis 2 As before, there is a similar form which requires some stabilization: 

K2 = E[c4] - 3E2[C2]. (7) 

This measure has a gradient of the form 

'V K2 = 4E [c3 - cE[c2]] = 3E [c(c2 - eM )](1'd], II m 11= 1. (8) 

Kurtosis 2 and ICA It has been shown that kurtosis, defined as 

K2 = E [c4] - 3E2 [c2] 

can be used for ICA(Hyvarinen and Oja, 1996). Thus, finding the extrema of 
kurtosis of the projections enables the estimation of the independent components. 
They obtain the following expression 

m = ~ (E- l [ddT] E [d(m· d)3] - 3m). 

which leads to an iterative "fixed-point algorithm". 

(9) 

Quadratic BCM The Quadratic BCM (QBCM) measure as given in (Intrator 
and Cooper, 1992) is of the form 

QBCM = !E[c3] - !E2[C2]. (10) 
3 4 

Maximizing this form using gradient ascent gives the learning rule: 

(11) 

4 METHODS 

We use 13x13 circular patches from 12 images of natural scenes, presented to the 
neuron each iteration of the learning. The natural scenes are preprocessed either 
with a Difference of Gaussians (DOG) filter(Law and Cooper, 1994) or a whitening 
filter (Oja, 1995; Bell and Sejnowski, 1995), which eliminates the second order cor­
relations. The moments of the output, c, are calculated iteratively, and when it is 
needed (Le. K2 and 8 2 ) we also normalize the weights at each iteration. 

For Oja's fixed-point algorithm, the learning was done in batches of 1000 patterns 
over which the expectation values were performed. However, the covariance matrix 
was calculated over the entire set of input patterns. 

5 RESULTS 

5.1 RECEPTIVE FIELDS 

The resulting receptive fields (RFs) formed are shown in Figure 1 for both the 
DOGed and whitened images. Every learning rule developed oriented receptive 
fields, though some were more sensitive to the preprocessing than others. The 
additive versions of kurtosis and skewness, K2 and 82 respectively, developed RFs 
with a higher spatial frequency, and more orientations, in the whitened environment 
than in the DOGed environment. 

The multiplicative versions of kurtosis and skewness, Kl and 8 1 respectively, as 
well as QBCM, sampled from many orientations regardless of the preprocessing. 
8 1 gives receptive fields with lower spatial frequencies than either QBCM or Kl. 
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This disappears with the whitened inputs, which implies that the spatial frequency 
of the RF is related to the dependence of the learning rule on the second moment. 
Example receptive fields using Oja's fixed-point ICA algorithm not surprisingly 
look qualitatively similar to those found using the stochastic maximization of K 2 • 

The output distributions for all of the rules appear to be double exponential. This 
distribution is one which we would consider sparse, but it would be difficult to 
compare the sparseness of the distributions merely on the appearance of the output 
distribution alone. In order to determine the sparseness of the code, we introduce 
a method for measuring it directly. 

Receptive Fields from Natural Scene Input 

DOGed Whitened 
Output Distribution 

§ LI g fIJ ~~~I A I 
-20 0 20 

Output Distribution 

§ 11.11 ~~~I 1\ I 
-20 0 20 

~.11 i1 ~~~I A I ~.II a ~~~I A I 
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~t! Ii1Ii ~~~VSJ ~ ••• ~~:I 1\ I 
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1\1 
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Figure 1: Receptive fields using DOGed (left) and whitened (right) image input 
obtained from learning rules maximizing (froni top to bottom) the Quadratic BCM 
objective function, Kurtosis (multiplicative), Kurtosis (additive), Skewness (multi­
plicative), and Skewness (additive). Shown are three examples (left to right) from 
each learning rule as well as the log of the normalized output distribution, before 
the application of the rectifying sigmoid. 

5.2 STRUCTURE REMOVAL: SENSITIVITY TO OUTLIERS 

Learning rules which are dependent on large polynomial moments, such as 
Quadratic BCM and kurtosis, tend to be sensitive to the tails of the distribution. 
In the case of a sparse code the outliers, or the rare and interesting events, are what 
is important. Measuring the degree to which the neurons form a sparse code can 
be done in a straightforward and systematic fashion. 

The procedure involves simply eliminating from the environment those patterns for 
which the neuron responds strongly. These patterns tend to be the high contrast 
edges, and are thus the structure found in the image. The percentage of patterns 
that needs to be removed in order to cause a change in the receptive field gives a 
direct measure of the sparsity of the coding. The results of this structure removal 
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are shown in Figure 2. 

For Quadratic BCM and kurtosis, one need only eliminate less than one half of a 
percent of the input patterns to change the receptive field significantly. To make 
this more precise, we define a normalized difference between two mean zero vectors 
as V == H1 - cos a), where a is the angle between the two vectors. This measure 
has a value of zero for identical vectors, and a maximum value of one for orthogonal 
vectors. 

Also shown in Figure 2 is the normalized difference as a function of the percentage 
eliminated, for the different learning rules. RF differences can be seen with as little 
as a tenth of a percent, which suggests that the neuron is coding the information in 
a very sparse manner. Changes of around a half a percent and above are visible as 
significant orientation, phase, or spatial frequency changes. Although both skewness 
and Quadratic BCM depend primarily on the third moment, QBCM behaves more 
like kurtosis with regards to sparse coding. 

Structure Removal for BCM, Kurtosis, and Skew 
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Figure 2: Example receptive fields (left), and normalized difference measure (right), 
resulting from structure removal using QBCM, Kl, and 81 , The RFs show the 
successive deletion of top 1% of the distribution. On the right is the normalized 
difference between RFs as a function of the percentage deleted in structure removal. 
The maximum possible value of the difference is 1. 

6 DISCUSSION 

This study attempts to compare several learning rules which have some statistical 
or biological motivation, or both. For a related study discussing projection pursuit 
and BCM see (Press and Lee, 1996). We have used natural scenes to gain some more 
insight about the statistics underlying natural images. There are several outcomes 
from this study: 

• All rules used, found kurtotic distributions. 

• The single cell lCA rule we considered, which used the subtractive form of kur­
tosis, achieved receptive fields qualitatively similar to other rules discussed. 

• The Quadratic BCM and the multiplicative version of kurtosis are less sensitive 
to the second moments of the distribution and produce oriented RFs even when 
the data is not whitened. The subtractive versions of kurtosis and skewness 
are sensitive and produces oriented RFs only after sphering the data (Friedman, 
1987; Field, 1994). 
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• Both Quadratic BCM and kurtosis are sensitive to the elimination of the upper 
1/2% portion of the distribution. The sensitivity to small portions of the 
distribution represents the other side of the coin of sparse coding. 

• The skew rules' sensitivity to the upper parts of the distribution is not so strong. 

• Quadratic BCM learning rule, which has been advocated as a projection index 
for finding multi-modality in high dimensional distribution, can find projections 
emphasizing high kurtosis when no cluster structure is present in the data. 
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