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Abstract 

We model the responses of cells in visual area VI during natural 
vision. Our model consists of a classical energy mechanism whose 
output is divided by nonclassical gain control and texture contrast 
mechanisms. We apply this model to review movies, a stimulus 
sequence that replicates the stimulation a cell receives during free 
viewing of natural images. Data were collected from three cells 
using five different review movies, and the model was fit separately 
to the data from each movie. For the energy mechanism alone we 
find modest but significant correlations (rE = 0.41, 0.43, 0.59, 
0.35) between model and data. These correlations are improved 
somewhat when we allow for suppressive surround effects (rE+G = 
0.42, 0.56, 0.60, 0.37). In one case the inclusion of a delayed 
suppressive surround dramatically improves the fit to the data by 
modifying the time course of the model's response. 

1 INTRODUCTION 
Complex cells in the primary visual cortex (area VI in primates) are tuned to 
localized visual patterns of a given spatial frequency, orientation, color, and drift 
direction (De Valois & De Valois, 1990). These cells have been modeled as linear 
spatio-temporal filters whose output is rectified by a static nonlinearity (Adelson 
& Bergen, 1985); more recent models have also included a divisive contrast gain 
control mechanism (Heeger, 1992; Wilson & Humanski, 1993; Geisler & Albrecht, 
1997). We apply a modified form of these models to a stimulus that simulates 
natural vision. Our model uses relatively few parameters yet incorporates the cells' 
temporal response properties and suppressive influences from beyond the classical 
receptive field (C RF). 
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2 METHODS 
Data Collection: Data were collected from One awake behaving Macaque monkey, 
using single unit recording techniques described elsewhere (Connor et al., 1997).1 
First, the cell's receptive field size and location were estimated manually, and tun­
ing curves were objectively characterized using two-dimensional sinusoidal gratings. 
Next a static color image of a natural scene was presented to the animal and his 
eye position was recorded continuously as he freely scanned the image for 9 seconds 
(Gallant et al., 1998).2 Image patches centered on the position of the cell's C RF 
(and 2-4 times the CRF diameter) were then extracted using an automated proce­
dure. The sequence of image patches formed a continuous 9 second review movie 
that simulated all of the stimulation that had occurred in and around the C RF 
during free viewing.3 Although the original image was static, the review movies 
contain the temporal dynamics of the saccadic eye movements made by the animal 
during free viewing. Finally, the review movies were played in and around the C RF 
while the animal performed a fixation task. 

During free viewing each eye position is unique, so each image patch is likely to 
enter the C RF only once. The review movies were therefore replayed several times 
and the cell's average response with respect to the movie timestream was computed 
from the peri-stimulus time histogram (PSTH). These review movies also form the 
model's stimulus input, while its output is relative spike probability versus time 
(the model cell's PSTH). 

Before applying the model each review movie was preprocessed by converting to 
gray scale (since the model does not consider color tuning), setting the average 
luminance level to zero (on a frame by frame basis) and prefiltering with the human 
contrast sensitivity function to more accurately reflect the information reaching cells 
in VI. 

Divisive Normalization Model: The model consists of a classical receptive field 
energy mechanism, ECRF, whose output is divided by two nonclassical suppressive 
mechanisms, a gain control field, G, and a texture contrast field, T. 

ECRF(t) 
PSTHmodel(t) ex 1 + Q G(t - d) + f3T(t - d) (1) 

We include a delay parameter for suppressive effects, consistent with the hypothesis 
that these effects may be mediated by local cortical interactions (Heeger, 1992; 
Wilson & Humanski, 1993). Any latency difference between the central energy 
mechanism and the suppressive surround will be reflected as a positive delay offset 
(15 > 0 in Equation 1). 

Classical Receptive Field Energy Mechanism: The energy mechanism, ECRF, 
is composed of four phase-dependent subunits, Uti>. Each subunit computes an inner 
product in space and a convolution in time between the model cell's space-time 
classical receptive field, CRFtI>(x, y, r), and the image, I(x, y, t). 

U<P(t) = J J J CRFtI>(x, y, r) . I(x, y, t - r) dx dydr (2) 

1 Recorcling was performed under a university-approved protocol and conformed to all 
relevant NIH and USDA guidelines. 

2 Images were taken from a Corel Corporation photo-CD library at 1280xl024 resolution. 
3Eye position data were collected at 1 KHz, whereas the monitor clisplay rate was 72.5 

Hz (14 ms per frame). Therefore each review movie frame was composed of the average 
stimulation occurring during the corresponcling 13.8 ms of free viewing. 
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The model presented here incorporates the simplifying assumption of a space-time 
separable receptive field structure, CRF4>(x, y, r) = CRF4>(x, y) CRF(r). 

u4>(t) = L: CRF(r) (L: L: CRF4>(x, y) . I(x, y, t - r)) 
T X Y 

(3) 

Time is discretized into frames and space is discretized into pixels that match the 
review movie input. CRF4>(x, y) is modeled as a sinusoidal grating that is spatially 
weighted by a Gaussian envelope (i.e. a Gabor function). In this paper CRF(r) 
is approximated as a delta function following a constant latency. This minimizes 
model parameters and highlights the model's responses to the stimulus present at 
each fixation. The latency, orientation and spatial frequency of the grating, and 
the size of the C RF envelope, are all determined empirically by maximizing the fit 
between model and data. 4 

A static non-linearity ensures that the model PSTH does not become negative. 
We have e~amined both half-wave rectification, fj4>(t) = max[U4>(t), O], and half­
squaring, U4>(t) = (max[U4>(t) , 0])2; here we present the results from half-wave 
rectification. Half-squaring produces small changes in the model PSTH but does 
not improve the fit to the data. 

The energy mechanism is made phase invariant by averaging over the rectified phase­
dependent subunits: 

(4) 

Gain Control Field: Cells in V 1 incorporate a contrast gain control mechanism 
that compensates for changes in local luminance. The gain control field, G, models 
this effect as the total image power in a region encompassing the C RF and surround. 

G(t-<5) = L:CRF(r) (L:L:VP(kx,ky,r) ) 
T k% ky 

P(kx, ky, r) = F FT[PG(x, y, r)] F FT*[JlG(x, y, r)] 

JlG(x, y, r) = vG(x, y) I(x, y, (t - <5) - r) 

(5) 

(6) 

(7) 

P(kx, ky, r) is the spatial Fourier power of JlG(x, y, r) and VG is a two dimensional 
Gaussian weighting function whose width sets the size of the gain control field. 

Heeger's (1992) divisive gain control term sums over many discrete energy mecha­
nisms that tile space in and around the area of the C RF. Equation 5 approximates 
Heeger's approach in the limiting case of dense tiling. 

Texture Contrast Field: Cells in area VI can be affected by the image surround­
ing the region of the CRF (Knierim & Van Essen, 1992) . The responses of many 
VI cells are highest when the optimal stimulus is presented alone within the CRF, 
and lowest when that stimulus is surrounded with a texture of similar orientation 
and frequency. The texture contrast field, T, models this effect as the image power 

4 As a fit statistic we use the linear correlation coefficient (Pearson's r) between model 
and data. Fitting is done with a gradient ascent algorithm. Our choice of correlation as a 
statistic eliminates the need to explicitly consider model normalization as a variable, and is 
very sensitive to latency mismatches between model and data. However, linear correlation 
is more prone to noise contamination than is X2 • 
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in the spatial region surrounding the C RF that matches the C RF's orientation and 
spatial frequency. 

1 90,180,270 [( )] 

T(t-J) = 4 1: 1:CRF(r) "£1: Jp4>(kx,ky,r) 
4>=0 T k", ky 

P4>(kx, ky, r) = F FT[p~(x, y, r)] F FT·[p~(x, y, r)] 

J.t~(x, y, r) = ~*(x, y) (1 - lICRF(X, y)) I(x, y, (t - J) - r) 

(8) 

(9) 

(10) 

~* is a Gabor function whose orientation and spatial frequency match those of the 
best' fit C RF4> (x, y). The envelope of ~* defines the size of the texture contrast field. 
lICRF is a two dimensional Gaussian weighting function whose width matches the 
C RF envelope, and which suppresses the image center. Thus the texture contrast 
term picks up oriented power from an annular region of the image surrounding the 
C RF envelope. T is made phase invariant by averaging over phase. 

3 RESULTS 
Thus far our model has been evaluated on a small data set collected as part of 
a different study (Gallant et ai., 1998). Two cells, 87A and 98C, were examined 
with one review movie each, while cell 97 A was examined with three review movies. 
Using this data set we compare the model's response in two interesting situations: 
cell 97 A, which had high orientation-selectivity, versus cell 87 A, which had poor 
orientation-selectivity; and cell 98C, which was directionally-selective, versus cell 
97 A, which was not directionally-selective. 

CRF Energy Mechanism: We separately fit the energy mechanism parameters 
to each of the three different cells. For cell 97 A the three review movies were fit 
independently to test for consistency of the best fit parameters. 

Table 1 shows the correlation between model and data using only the C RF energy 
mechanism (a = f3 = 0 in Equation 1). The significance of the correlations was 
assessed via a permutation test. The correlation values for cells 97 A and 98C, 
though modest, are significant (p < 0.01). For these cells the 95% confidence 
intervals on the best fit parameter values are consistent with estimates from the 
flashed grating tests. The best fit parameter values for cell 97 A are also consistent 
across the three independently fit review movies. 

The model best accounts for the data from cell 97 A. This cell was highly selective for 
vertical gratings and was not directionally-selective. Figure 1 compares the PSTH 
obtained from cell 97 A with movie B to the model PSTH. The model generally 
responds to the same features that drive the real cell, though the match is imperfect. 
Much of the discrepancy between the model and data arises from our approximation 
of CRF(t) as a delta function. The model's response is roughly constant during 

Cell 87A 97A 97A 97A 98C 
Movie A A B C A 
Oriented No Yes Yes Yes Yes 
Directional No No No No Yes 
rE NA 0.41 0.43 0.59 0.35 

Table 1: Correlations between model and data PSTHs. Oriented cells showed 
orientation-selectivity in the flashed grating test while Directional cells showed 
directional-selectivity during manual characterization. rE is the correlation between 
ECRF and the data. No fit was obtained for cell 87 A. 
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Figure 1: CRF energy mechanism versus data (Cell 97A, Movie B) . White indicates that 
the model response is greater than the data, while black indicates the data is greater than 
the model and gray indicates regions of overlap. A perfect match between model and data 
would result in the entire area under the curve being gray. Our approximation of CRF(t) 
leads to a relatively constant model PSTH during each fixation. In contrast the real cell 
generally gives a phasic response as each saccade brings a new stimulus into the CRF. In 
general the same movie features drive both model and cell. 

each fixation, which causes the model PSTH to appear stepped. In contrast the 
data PSTH shows a strong phasic response at the beginning of each fixation when 
a new stimulus patch enters the cell's CRF . 

The model is less successful at accounting for the responses of the directionally­
selective cell, 98C. This is probably because the model's space-time separable re­
ceptive field misses motion energy cues that drive the cell. The model completely 
failed to fit the data from cell 87 A. This cell was not orientation-selective, so the 
fitting procedure was unable to find an appropriate orientation for the CRF¢(x, y) 
Gabor function. 5 

CRF Energy Mechanism with Suppressive Surround: Table 2 lists the im­
provements in correlation obtained by adding the gain control term (a > 0, fJ = 0 
in Equation 1). For cell 97 A (all three movies) the best correlations are obtained 
when the surround effects are delayed by 56 ms relative to the center. The best 
correlation for cell 98C is obtained when the surround is not delayed. 

In three out of four cases the correlation values are barely improved when the 
surround effects are included, suggesting that the cells were not strongly surround­
inhibited by these review movies. However, the improvement is quite striking in the 

SFor cell 87 A the correlation values in the orientation and spatial frequency parameter 
subspace contained three roughly equivalent maxima. Contamination by multiple cells 
was unlikely due to this cell's excellent isolation. 

9 
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Cell 97A 97A 97A 98C 
Movie A B C A 
rE+G 0.42 0.56 0.60 0.37 
~r +0.01 +0.13 +0.01 +0.02 

Table 2: Correlation improvements due to surround gain control mechanism. rE+G 

gives the correlation value between the best fit model and the data. ~r gives the 
improvement over rEo Including G in Equation 1 leads to a dramatic correlation 
increase for cell 97 A, movie B, but not for the other review movies. 

case of cell 97 A, movie B. Figure 2 compares the data with a model using both Ecr f 
and G in Equation 1. Here the delayed surround suppresses the sustained responses 
seen in Figure 1 and results in a more phasic model PSTH that closely matches the 
data. 

We consider G and T fields both independently and in combination. For each 
we independently fit for Q, {3, &, and the size of the suppressive fields. However, 
the oriented Fourier power correlates with the total Fourier power for our sample of 
natural images, so that G and T are highly correlated. Combined fitting of G and T 
terms leads to competition and dominance by G (i.e. (3 -r 0). In this paper we only 
report the effects of the gain control mechanism; the texture contrast mechanism 
results in similar (though slightly degraded) results. 
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Figure 2: C RF energy mechanism with delayed surround gain control versus data (Cell 
97A, Movie B). Color scheme as in Figure 1. The inclusion of the delayed G term results 
in a more phasic model response which greatly improves the match between model and 
data. 

9 
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4 DISCUSSION 
This preliminary study suggests that models of the form outlined here show great 
promise for describing the responses of area V1 cells during natural vision. For 
comparison consider the correlation values obtained from an earlier neural network 
model that attempted to reproduce V1 cells' responses to a variety of spatial pat­
terns (Lehky et al. 1992) . They report a median correlation value of 0.65 for 
complex stimuli, whereas the average correlation score from Table 2 is 0.49. This is 
remarkable considering that our model has only 7 free parameters, a very hmited 
data set for fitting, doesn't yet consider color tuning or directional-selectivity and 
considers response across time. 

Future implementations of the model will use a more sophisticated energy mech­
anism that allows for nonseparable space time receptive field structure and more 
realistic temporal response dynamics. We will also incorporate more detail into 
the surround mechanisms, such as asymmetric surround structure and a broadband 
texture contrast term. 

By abstracting physiological observation into approximate functional forms our 
model balances explanatory power against parametric complexity. A cascaded series 
of these models may form the foundation for future modeling of cells in extra-striate 
areas V2 and V4. Natural image stimuli may provide an appropriate stimulus set 
for development and validation of these extrastriate models. 
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