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Abstract 

This paper presents a new approach to the problem of modelling daily 
rainfall using neural networks. We first model the conditional distribu­
tions of rainfall amounts, in such a way that the model itself determines 
the order of the process, and the time-dependent shape and scale of the 
conditional distributions. After integrating over particular weather pat­
terns, we are able to extract seasonal variations and long-term trends. 

1 Introduction 

Analysis of rainfall data is important for many agricultural, ecological and engineering 
activities. Design of irrigation and drainage systems, for instance, needs to take account 
not only of mean expected rainfall, but also of rainfall volatility. In agricultural planning, 
changes in the annual cycle, e.g. advances in the onset of winter rain, are significant in 
determining the optimum time for planting crops. Estimates of crop yields also depend 
on the distribution of rainfall during the growing season, as well as on the overall amount. 
Such problems require the extrapolation of longer term trends as well as the provision of 
short or medium term forecasts. 

2 Occurrence and amount processes 

Models of daily precipitation commonly distinguish between the occurrence process, i.e. 
whether or not it rains, and the amount process, i.e. how much it rains, if it does. The 
occurrence process is often modelled as a two-state Markov chain of first or higher order. 
In discussion of [12], Katz traces this approach back to Quetelet in 1852. A first order 
chain has been considered adequate for some weather stations, but second or higher order 
models may be required for others, or at different times of year. Non-stationary Markov 
chains have been used by a number of investigators, and several approaches have been taken 
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to the problem of seasonal variation, e.g. using Fourier series to model daily variation of 
parameters [16, 12, 15]. 

The amount of rain X on a given day, assuming it rains, normally has a roughly exponential 
distribution. Smaller amounts of rain are generally more likely than larger amounts. Several 
models have been used for the amount process. Katz & Parlange [9], for example, assume 
that \IX has a normal distribution, where n is a positive integer empirically chosen to 
minimise the skewness of the resulting historical distribution. But use has more commonly 
been made of a gamma distribution [7,8, 12] or a mixture of two exponentials [16, 15]. 

3 Stochastic model 

The present approach is to deal with the occurrence and amount processes jointly, by as­
suming that the distribution of the amount of rain on a given day is a mixture of a discrete 
and continuous component. The discrete component relates to rainfall occurrence and the 
continuous component relates to rainfall amount on rainy days. 

We use a gamma distribution for the continuous component. l This has density proportional 
to x v - 1 e-x to within an adjustable scaling of the x-axis. The shape parameter v > 0 
controls the ratio of standard deviation to mean. It also determines the location of the 
mode, which is strictly positive if v > 1. For certain patterns of past precipitation, larger 
amounts may be more likely on the following day than smaller amounts. Specifically the 
distribution of the amount X of rain on a given day is modelled by the three parameter 
family 

where 0 ~ a ~ 1 and v,O > 0 and 

if x < 0 

if x ~ 0 

r(v,z) = r(V)-l 100 yv-l e- y dy 

(1) 

is the incomplete gamma function. For a < 1, there is a discontinuity at x = 0 corre­
sponding to the discrete component. Putting x = 0, it is seen that a = P(X > 0) is the 
probability of rain on the day in question. The mean daily rainfall amount is avO and the 
variance is aV{l + v(l - a)}02. 

4 Modelling time dependency 

The parameters a, v, 0 determining the conditional distribution for a given day, are under­
stood to depend on the preceding pattern of precipitation, the time of year etc. To model 
this dependency we use a neural network with inputs corresponding to the conditioning 
events, and three outputs corresponding to the distributional parameters.2 Referring to the 
activations of the three output units as zO:, ZV and zO, we relate these to the distributional 
parameters by 

1 
v = expzv 0= expzo (2) a=----

1 + expzO: 
in order to ensure an unconstrained parametrization with 0 < a < 1 and v,O > 0 for any 
real values of zO:, zV, zO. 

1 It would be straightforward to use a mixture of gammas, or exponentials, with time-dependent 
mixture components. A single gamma was chosen for simplicity to illustrate the approach. 

2 A similar approach to modelling conditional distributions, by having the network output distri­
butional parameters, is used, for example, by Ghabramani & Jordan [6], Nix & Weigend [10], Bishop 
& Legleye [3], Williams [14], Baldi & Chauvin [2]. 
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On the input side, we first need to make additional assumptions about the statistical proper­
ties of the process. Specifically it is assumed that the present is stochastically independent 
of the distant past in the sense that 

(t > T) (3) 

for a sufficiently large number of days T. In fact the stronger assumption will be made that 

P(Xt>X!Xt-1,,,,,XO) = P(Xt>X!Rt-1, ,, ,,Rt-T) (t>T) (4) 

where Rt = (Xt > 0) is the event of rain on day t. This assumes that today's rainfall 
amount depends stochastically only on the occurrence or non-occurrence of rain in the 
recent past, and not on the actual amounts. Such a simplification is in line with previous 
approaches [8, 16, 12J. For the present study T was taken to be 10. 

To assist in modelling seasonal variations, cyclic variables sin T and cos T were also pro­
vided as inputs, where T = 21rt/ D and D = 365.2422 is the length of the tropical year. 
This corresponds to using Fourier series to model seasonality [16, 12J but with the num­
ber of harmonics adaptively determined by the model.3 To allow for non-periodic non­
stationarity, the current value of t was also provided as input. 

5 Model fitting 

Suppose we are given a sequence of daily rainfall data of length N. Equation (4) implies 
that the likelihood of the full data sequence (x N -1 I ••• I Xo) factorises as 

N-1 
p(XN-1 , .. . I Xo; w) = p(XT-1I" . I Xo) II p(Xt ! Tt-1 I' .. I Tt-T; w) (5) 

t=T 

where the likelihood p(XT-1I'" IXO) of the initial sequence is not modelled and can be 
considered as a constant (compare [14]). Our interest is in the likelihood (5) of the actual 
sequence of observations, which is understood to depend on the variable weights w of the 
neural network. Note that p(Xt ! Tt-1 I' •• I Tt-T; w) is computed by means of the neural 
network outputs zf I zf I zf, using weights wand the inputs corresponding to time t. 

The log likelihood of the data can therefore be written, to within a constant, as 

N-1 
logp(xN-1 I' .. IXO; w) = L logp(xt ! Tt-1,· .. I Tt-T; w) 

t=T 

or, more simply, 
N-1 

L(w) = L Lt(w) 
t=T 

where from (1) 

L () {log(1 - at) 
t w = log at + (lit -1) logxt -lit logOt -logr(lIt) - xt/Ot 

where dependence of at, lit I Ot on w, and also on the data, is implicit. 

if Xt = 0 
if Xt > 0 

(6) 

(7) 

To fit the model, it is useful to know the gradient 'VL(w). This can be computed using 
backpropagation if we know the partial derivatives of L(w) with respect to network out­
puts. In view of (6) we can concentrate on a single observation and perform a summation. 

3Note that both sin nr and cos nr can be expressed as non-linear functions of sin r and cos r. 
which can be approximated by the network. 
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Omitting subscript references to t for simplicity, and recalling the links between network 
outputs and distributional parameters given by (2), we have 

8L { -a if x = 0 
8zQ 1-0 if x > 0 

8L { 0 if x = 0 
= x (8) 

8zv v'I/J (v) - v log (j ifx> 0 

8L { 0 if x = 0 

8zo 
x 

if x > 0 v--
() 

where 
d r'(v) 

'I/J(v) = -logr(v) = --
dv r(v) 

is the digamma function of v. Efficient algorithms for computing log r(v) in (7) and 'I/J(v) 
in (8) can be found in Press et al. [11] and Amos [1]. 

6 Regularization 

Since neural networks are universal approximators, some form of regularization is needed. 
As in all statistical modelling, it is important to strike the right balance between jumping 
to conclusions (overfitting) and refusing to learn from experience (underfitting). For this 
purpose, each model was fitted using the techniques of [13] which automatically adapt the 
complexity of the model to the information content of the data, though other comparable 
techniques might be used. The natural interpretation of the regularizer is as a Bayesian 
prior. The Bayesian analysis is completed by integration over weight space. In the present 
case, this was achieved by fitting several models and taking a suitable mixture as the so­
lution. On account of the large datasets used, however, the results are not particularly 
sensitive to this aspect of the modelling process. 

7 Results for conditional distributions 

The process was applied to daily rainfall data from 5 stations in south east England and 5 
stations in central Italy.4 The data covered approximately 40 years providing some 15,000 
observations for each station. A simple fully connected network was used with a single 
layer of 13 input units, 20 hidden units and 3 output units corresponding to the 3 parameters 
of the conditional distribution shown in (2). As a consequence of the pruning features of the 
regularizer, the models described here used an average of roughly 65 of the 343 available 
parameters. 

To illustrate the general nature of the results, Figure 1 shows an example from the analysis 
of an early part of the Falmer series. It is worth observing the succession of 16 rainy days 
from day 39 to day 54. The lefthand figure shows that the conditional probability of rain 
increases rapidly at first, and then levels out after about 5-7 days.s Similar behaviour is 
observed for successive dry days, for example between days 13 and 23. This suggests 
that the choice of 10 time lags was sufficient. Previous studies have used mainly first 
or second order Markov chains [16, 12]. Figure 1 confirms that conditional dependence 

4The English stations were at Cromptons, FaImer, Kemsing, Petworth, Rothertield; the Italian 
stations were at Monte Oliveto, Pisticci, Pomarico, Siena, Taverno d' Arbia. 

sIn view of the number of lags used as inputs, the conditional probability would necessarily be 
constant after 10 days apart from seasonal effects. In fact this is the last quarter of 1951 and the 
incidence of rain is increasing here at that time of year. 
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Figure 1: Results for the 10 weeks from 18 September to 27 November, 1951. The lefthand 
figure shows the conditional probability of rain for each day, with days on which rain 
occurred indicated by vertical lines. The righthand figure shows the conditional expected 
amount of rain in millimeters for the same period, together with the actual amount recorded. 

decays rapidly at this station, at this time of year, but also indicates that it can persist for up 
to at least 5 days (compare [5,4]). 

8 Seasonality and trends 

Conditional probabilities and expectations displayed in Figure 1 show considerable noise 
since they are realisations of random variables depending on the rainfall pattern for the last 
10 days. For the purpose of analysing seasonal effects and longer term trends, it is more 
indicative to integrate out the noise resulting from individual weather patterns as follows. 

Let Rt denote the event (Xt > 0) and let Rt denote the complementary event (Xt = 0). 
The expected value of Xt can then be expressed as 

E(Xt ) = L E(X t I At - 1, . .. ,At-T) P(At- 1, . .. ,At-T) (9) 

where each event At stands for either Rt or R t , and summation is over the 2T possible 
combinations. Equation (9) takes the full modelled jOint distribution over the variables 
X N -1, .. . ,X 0 and extracts the marginal distribution for X t . This should be distinguished 
from an unconditional distribution which might be estimated by pooling the data over all 
40 years. E(Xt ) relates to a specific day t. Note that (9) also holds if X t is replaced by 
any integrable function of X t , in particular by the indicator function of the event (X t > 0) 
in which case (9) expresses the probability of rain on that day. 

Examining (9) we see that the conditional expectations in the first term on the right are 
known from the model, which supplies a conditional distribution not only for the sequence 
of events which actually occurred, but for any possible sequence over the previous T days. 
It therefore only remains to calculate the probabilities P( At- 1 , ... , At-T) of T -day se­
quences preceding a given day t. Note that these are again time-dependent marginal prob­
abilities, which can be calculated recursively from 

P(At , .. . , At-T+t} = 
P(At I At- 1,· . . , At -T+1 Rt-T) P(At- 1 , . .• , At-T+1 Rt-T) + 
P(At I At-I,·· ., At-T+IRt-T) P(At- 1, . .. , At-T+IRt-T) 

provided we assume a prior distribution over the 2T initial sequences (AT-I, . .. , Ao) as 
a base for the recursion. The conditional probabilities on the right are given by the model, 
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Figure 2: Integrated results for Pomarico from 1955-1985. The lefthand figure shows the 
daily probability of rain, indicating seasonal variation from a summer minimum to a winter 
maximum. The righthand figure shows the daily mean (above) and standard deviation 
(below) of rainfall amount in millimeters. 

as before, and the unconditional probabilities are given by the recursion. It turns out that 
results are insensitive to the choice of initial distribution after about 50 iterations, verifying 
that the occurrence process, as modelled here, is in fact ergodic. 

9 Integrated results 

Results for the integrated distribution at one of the Italian stations are shown in Figure 2. 
By integrating out the random shocks we are left with a smooth representation of time 
dependency alone. The annual cycles are clear. Trends are also evident over the 30 year 
period. The mean rainfall amount is decreasing significantly, although the probability of 
rain on a given day of the year remains much the same. Rain is occurring no less frequently, 
but it is occurring in smaller amounts. Note also that the winter rainfall (the upper envelope 
of the mean) is decreasing more rapidly than the summer rainfall (the lower envelope of 
the mean) so that the difference between the two is narrowing. 

10 Conclusions 

This paper provides a new example of time series modelling using neural networks. The 
use of a mixture of a discrete distribution and a gamma distribution emphasises the general 
principle that the "error function" for a neural network depends on the particular statistical 
model used for the target data. The use of cyclic variables sin T and cos T as inputs shows 
how the problem of selecting the number of harmonics required for a Fourier series analysis 
of seasonality can be solved adaptively. Long term trends can also be modelled by the use 
of a linear time variable, although both this and the last feature require the presence of 
a suitable regularizer to avoid overfitting. Lastly we have seen how a suitable form of 
integration can be used to extract the underlying cycles and trends from noisy data. These 
techniques can be adapted to the analysis of time series drawn from other domains. 
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