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Abstract 

We discuss a solution to the problem of separating waveforms pro­
duced by multiple cells in an extracellular neural recording. We 
take an explicitly probabilistic approach, using latent-variable mod­
els of varying sophistication to describe the distribution of wave­
forms produced by a single cell. The models range from a single 
Gaussian distribution of waveforms for each cell to a mixture of 
hidden Markov models. We stress the overall statistical structure 
of the approach, allowing the details of the generative model chosen 
to depend on the specific neural preparation. 

1 INTRODUCTION 

Much of our empirical understanding of the systems-level functioning of the brain 
has come from a procedure called extracellular recording. The electrophysiologist 
inserts an insulated electrode with exposed tip into the extracellular space near 
one or more neuron cell bodies. Transient currents due to action potentials across 
nearby cell membranes are then recorded as deflections in potential, spikes, at the 
electrode tip. At an arbitrary location in gray matter, an extracellular probe is likely 
to see pertubations due to firing in many nearby cells, each cell exhibiting a distinct 
waveform due to the differences in current path between the cells and the electrode 
tip. Commonly, the electrode is maneuvered until all the recorded deflections have 
almost the same shape; the spikes are then all presumed to have arisen from a 
single isolated cell. This process of cell isolation is time-consuming, and it permits 
recording from only one cell at a time. IT differences in spike waveform can be 
exploited to sort recorded events by cell, the experimental cost of extracellular 
recording can be reduced, and data on interactions between simultaneously recorded 
cells can be obtained. 
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Many ad hoc solutions to spike sorting have been proposed and implemented, but 
thus far an explicit statistical foundation, with its accompanying benefits, has 
mostly been lacking. Lewicki (1994) is the exception to this rule and provides a well­
founded probabilistic approach, but uses assumptions (such as isotropic Gaussian 
variability) that are not well supported in many data sets (see Fee et al (1996)). 

A first step in the construction of a solution to the spike-sorting problem is the 
specification of a model by which the data are taken to be generated. The model 
has to be powerful enough to account for most of the variability observed in the 
data, while being simple enough to allow tractable and robust inference. In this 
paper we will discuss a number of models, of varying sophistication, that fall into 
a general framework. We will focus on the assumptions and inferential components 
that are common to these models and consider the specific models only briefly. In 
particular, we will state the inference algorithms for each model without derivation 
or proof; the derivations, as well as measures of performance, will appear elsewhere. 

2 DATA COLLECTION 

The algorithms that appear in this paper are likely to be of general applicabil­
ity. They have been developed, however, with reference to data collected from the 
parietal cortex of adult rhesus macaques using tetrodes (Pezaris et a11997). 

The tetrode is a bundle of four individually insulated 13/lm-diameter wires twisted 
together and cut so that the exposed ends lie close together. The potential on each 
wire is amplified (custom electronics), low-pass filtered (9-pole Bessel filter, Ie = 
6.4 kHz) to prevent aliasing, and digitized (fs between 12.8 and 20 kHz) (filters and 
AjD converter from Thcker Davis Technologies). This data stream is recorded to 
digital media; subsequent operations are currently performed off-line. 

In preparation for inference, candidate events (where at least one cell fired) are 
identified in the data stream. The signal is digitally high-pass filtered (fe = 0.05Is) 
and the root-mean-square (RMS) amplitude on each channel is calculated. This 
value is an upper bound on the noise power, and approaches the actual value when 
the firing rates of resolvable cells are low. Epochs where the signal rises above three 
times the RMS amplitude for two consecutive signals are taken to be spike events. 
The signal is upsampled in the region of each such threshold crossing, and the time 
of the maximal subsequent peak across all channels is determined to within one­
tenth of a sample. A short section is then extracted at the original Is such that this 
peak time falls at a fixed position in the extracted segment. One such waveform is 
extracted for each threshold crossing. 

3 GENERATIVE FRAMEWORK 

Our basic model is as follows. The recorded potential trace V(t) is the sum of 
influences that are due to resolvable foreground cells (which have a relatively large 
e~ect) and a background noise process. We write 

(1) 

Here, c~ is an indicator variable that takes the value 1 if the mth cell fires at time 
T and 0 otherwise. If cell m fires at T it adds a deflection of shape S::n (t - T) to the 
recorded potential. The effect of all background neural sources, and any electrical 
noise, is gathered into a single term 7](t). For a multichannel probe, such as a 
tetrode, all of V(t), 7](t) and S::n(t) are vector-valued. Note that we have indexed 
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Figure 1: Schematic graph of the general framework. 

the spike shapes from the mth cell by time; this allows us to model changes in the 
spike waveform due to intrinsic biophysical processes (such as sodium inactivation 
during a burst of spikes) as separate to the additive background process. We will 
discuss models where the choice of S::n is purely stochastic, as well as models in 
which both the probability of firing and the shape of the action potential depend 
on the recent history of the cell. 

It will be useful to rewrite (1) in terms of the event waveforms described in section 2. 
At times r when no foreground cell fires all the c~ are zero. We index the remaining 
times (when at least one cell fired) by i and write c!n for c~ at ri (similarly for S:n) 
to obtain 

(2) 

This basic model is sketched, for the case of two cells, in figure 1. Circles repre­
sent stochastic variables and squares deterministic functions, while arrows indicate 
conditional or functional dependence. We have not drawn nodes for 0Tl and O. 
The representation chosen is similar to, and motivated by, a directed acyclic graph 
(DAG) model of the generative distribution. For clarity, we have not drawn edges 
that represent dependencies across time steps; the measurement V(t) depends on 
many nearby values of S::n and c~, and f/(t) may be autocorrelated. We will con­
tinue to omit these edges, even when we later show connections in time between c~ 
and S::n . 

4 INFERENCE 

We have two statistical objectives. The first is model selection, which includes the 
choice of the number of cells in the foreground . The second is inference: finding 
good estimates for the c~ given the measured V(t) . We will have little to say on 
the subject of model selection in this paper, besides making the observation that 
standard techniques such as cross-validation, penalized likelihood or approximation 
of the marginal likelihood (or "evidence") are all plausible approaches. We will 
instead focus on the inference of the spike times. 

Rather than calculating the marginalized posterior for the c~ we will find the dis­
tribution conditioned on the most probable values of the other variables. This is a 
common approximation to the true posterior (compare Lewicki (1994)). 

A simple property of the data allows us to estimate the most probable values of 
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the parameters in stages; times at which at least one foreground cell fires can be 
identified by a threshold, as described in section 2. We can then estimate the noise 
parameters 8Tf by looking at segments of the signal with no foreground spikes, the 
waveform distribution and firing time parameters 8 from the collection of spike 
events, and finally the spike times c:-n and the waveforms S:n by a filtering process 
applied to the complete data V(t) given these model parameters. 

4.1 NOISE 

We study the noise distribution as follows. We extract lms segments from a band­
passed recording sampled at 16 kHz from a four-channel electrode, avoiding the 
foreground spikes identified as in section 2. Each segment is thus a 64-dimensional 
object. We find the principal components of the ensemble of such vectors, and 
construct histograms of the projections of the vectors in these directions. A few of 
these histograms are shown on a log-scale in figure 2 (points), as well as a zero-mean 
Gaussian fit to the distribution projected along the same axes (lines). It is clear 
that the Gaussian is a reasonable description, although a slight excess in kurtosis 
is visible in the higher principal components. 
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Figure 2: Distribution of background noise. 

The noise parameters are now seen to be the covariance of the noise, ETf (we repre­
sent it as a covariance matrix taken over the length of a spike). In general, we can 
fit an autoregressive process description to the background and apply a filter that 
will whiten the noise. This will prove to be quite useful during the filtering stages. 

4.2 WAVEFORM PARAMETERS 

We can make some general remarks about the process of inferring the parameters 
of the models for S~ and c:-n. Specific models and their inference algorithms will 
appear in section 5. 

The models will, in general, be fit to the collection of segments extracted and aligned 
as described in section 2. At other times they have no influence on the waveform 
recorded. We will represent these segments by Vi, implying a connection to the 
firing events ri used in (2). It should be borne in mind that the threshold-based 
trigger scheme will not exactly identify all of the true ri correctly. 

We will assume that each segment represents a single Sm, that is, that no two 
cells fire at times close enough for their spike waveforms to overlap. This is an 
unreasonable assumption; we can shore it up partially by eliminating from our col­
lection of Vi segments that appear heuristically to contain overlaps (for example, 
double-peaked waveforms). Ultimately, however, we will need to make our infer­
ence procedure robust enough that the parameters describing the model are well 
estimated despite the errors in the data. 
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Figure 3: The mixture model for Vi. 

The advantage to making this assumption is that the overall model for the distribu­
tion of the Vi becomes a mixture: a single control variable ci sets exactly one of the 
c~ to 1. Vi is then drawn from the distribution of waveforms for the selected cell, 
convolved with the noise. This is a formal statement of the "clustering" approach to 
spike-sorting. Mixture models such as these are easy to fit using the Expectation­
Maximization (EM) algorithm (Dempster et al1977). We will also consider models 
with additional latent state variables, which are used to describe the distributions 
of the Sm and Cm, where again EM will be of considerable utility. 

The measured ensemble Vi will be incorrect on a number of counts. The threshold 
may make either false positive or false negative errors in selecting ri, and some of 
the identified Vi will represent overlaps. We can use heuristics to minimize such 
errors, but need to account for any remaining outliers in our models. We do so by 
introducing additional mixture components. Segments of noise that are incorrectly 
identified as foreground events are handled by an explicit zero mixture component 
whose variability is entirely due to the background noise. Overlaps are handled by 
providing very broad low-probability components spanning large areas in waveform 
space; clusters of overlap waveforms are likely to be diffuse and sparse. 

The mixture model is sketched in figure 3. In the basic model the variables are 
chosen independently for each cross-threshold event. The dynamic models discussed 
below will introduce dependencies in time. 

4.3 SPIKE TIMES 

In our final stage of inference, we make estimates of the c~ given the V(t) and 
the most-probable parameters fit in the previous two stages. This is exactly the 
signal detection problem of identifying pulses (perhaps with random or else adapting 
parameters) in Gaussian noise of known covariance. Solutions to this are well known 
(McDonough and Whalen 1995) and easily adapted to the problem at hand (Sahani 
et al1998). 
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5 SPECIFIC MODELS 

Finally, we describe examples of models that may be used within this framework. 
As stated before, in this brief catalog we summarize the motivation for each, and 
state without derivation or proof the algorithms for inference. The details of these 
algorithms, as well as tests of performance, will appear elsewhere. 

5.1 CONSTANT WAVEFORM 

The simplest model is one in which we take the waveform of the mth cell to remain 
unchanged and the firing probability of each cell to be constant. In this case we drop 
the index r or i on the waveform shape and just write Sm (t - r i ) . We write Pm for 
the probability that a given event is due to the mth cell firing. The mixture model 
is then a mixture of multivariate Gaussian distributions, each with covariance Er" 

mean Sm and mixture fraction Pm. The EM algorithm for such a mixture is well 
known (Nowlan 1990). 

Given parameters 8(n) = {S~), p~)} from the nth iteration, we find the expected 
values of the e~ (called the responsibilities), 

(n) N(Vi. S(n) E ) 
ri = £[ei I {Vi} 8(n)] = pm ,m, 1) (3) 

m m , '"'p~n) N(Vi. S~n) E )' 
L.Jm 'm'1) 
in 

and then reestimate the parameters from the data weighted by the responsibilities. 

L:r~ 
P(n+l) = _i __ . 

m N' 

5.2 REFRACTORY FIRING 

(4) 

A simple modification to this scheme can be used to account for the refractory period 
between spikes from the same cell (Sahani et al1998). The model is similar to the 
Gaussian mixture above, except that the choice of mixture component is no longer 
independent for each waveform. If the waveforms arrive within a refractory period 
they cannot have come from the same cell. This leads to the altered responsibilities: 

i 
i rm IT 

sm = Zi (5) 
j ;(i,j) refractory 

where Z is a normalizing constant. 

The M step here is identical to (4), with the responsibilities s~ replacing the r~. 

5.3 STATIC MIXTURE 

As we have suggested above, the waveform of the mth cell is not, in fact, unchanged 
each time the cell fires. Variability in excess of the additive background noise is 
introduced by changes in the biophysical properties of the cell (due to recent firing 
patterns, or external modulators) as well as by background activity that may be 
correlated with foreground events. We can attempt to model this variability as 
giving rise to a discrete set of distinct waveforms, which are then convolved with the 
previously measured noise covariance to obtain the distribution of measurements. In 
effect, we are tiling an irregularly shaped distribution with a mixture of Gaussians 
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of fixed shape, E1J" We obtain a hierarchical mixture distribution in which each 
component corresponding to a cell is itself is a mixture of Gaussians. Given a 
particular hierarchical arrangement the parameters can be fit exactly as above. 

While this approach seems attractive, it suffers from the flaw that model selection 
is not well defined. In particular, the hierarchical mixture is equivalent in terms of 
likelihood and parameters to a single-layer, flat, mixture. To avoid this problem we 
may introduce a prior requiring that the Gaussian components from a single cell 
overlap, or otherwise lie close together. It is, however, difficult to avoid excessive 
sensitivity to such a prior. 

5.4 DYNAMICAL MIXTURE 

An alternative approach is to replace the independent transitions between the com­
ponents of the mixture distribution of a single cell with a dynamical process that 
reflects the manner in which both firing probability and waveform shape depend 
on the recent history of the cell. In this view we may construct a mixture of hid­
den Markov models (HMMs), one for each cell. Our earlier mixture assumption 
now means that the models must be coupled so that on anyone time step at most 
one makes a transition to a state corresponding to firing. This structure may be 
thought of as a special case of the factorial HMM discussed by Gharamani and 
Jordan (1997). 

The general model is known to be intractable .. In this special case, however, the 
standard forward-backward procedure for a single HMM can be modified to operate 
on reponsibiIity-weighted data, where the reponsibilities are themselves calculated 
during the forward phase. This is empirically found to provide an effective Estep. 
The M step is then straightforward. 
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