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Abstract 

• In 

We apply information maximization / maximum likelihood blind 
source separation [2, 6) to complex valued signals mixed with com­
plex valued nonstationary matrices. This case arises in radio com­
munications with baseband signals. We incorporate known source 
signal distributions in the adaptation, thus making the algorithms 
less "blind". This results in drastic reduction of the amount of data 
needed for successful convergence. Adaptation to rapidly changing 
signal mixing conditions, such as to fading in mobile communica­
tions, becomes now feasible as demonstrated by simulations. 

1 Introduction 
In SDMA (spatial division multiple access) the purpose is to separate radio signals 
of interfering users (either intentional or accidental) from each others on the basis 
of the spatial characteristics of the signals using smart antennas, array processing, 
and beamforming [5, 8). Supervised methods typically use a variant of LMS (least 
mean squares), either gradient based, or algebraic, to adapt the coefficients that 
describe the channels or their inverses. This is usually a robust way of estimating 
the channel but a part of the signal is wasted as predetermined training data, and 
the methods might not be fast enough for rapidly varying fading channels. 

Unsupervised methods either rely on information about the antenna array manifold, 
or properties of the signals. Former approaches might require calibrated antenna 
arrays or special array geometries. Less restrictive methods use signal properties 
only, such as constant modulus, finite alphabet, spectral self-coherence, or cyclo­
stationarity. Blind source separation (BSS) techniques typically rely only on source 
signal independence and non-Gaussianity assumptions. 

Our aim is to separate simultaneous radio signals occupying the same frequency 
band, more specifically, radio signals that carry digital information. Since linear 
mixtures of antenna signals end up being linear mixtures of (complex) baseband 
signals due to the linearity of the downconversion process, we will apply BSS at 
the baseband stage of the receiver. The main contribution of this paper is to 
show that by making better use of the known signal properties, it is possible to 
devise algorithms that adapt much faster than algorithms that rely only on weak 
assumptions, such as source signal independence. 

We will first discuss how the probability density functions (pdf) of baseband DPSK 
signals could be modelled in' a way that can efficiently be used in blind separation 
algorithms. We will incorporate those models into information maximization and 



Blind Separation of Radio Signals in Fading Channels 757 

into maximum likelihood approaches [2, 6). We will then continue with the maxi­
mum likelihood approach and other modulation techniques, such as QAM. Finally, 
we will show in simulations, how this approach results in an adaptation process that 
is fast enough for fading channels. 

2 Models of baseband signal distributions 
In digital communications the binary (or n-ary) information is transmitted as dis­
crete combinations of the amplitude and/or the phase of the carrier signal. After 
downconversion to baseband the instantaneous amplitude of the carrier can be ob­
served as the length of a complex valued sample of the baseband signal, and the 
phase of the carrier is discernible as the phase angle of the same sample. Possible 
combinations that depend on the modulation method employed, are called sym­
bol constellations. N-QAM (quadrature amplitude modulation) utilizes both the 
amplitude and the phase, whereby the baseband signals can only take one of N 
possible locations on a grid on the complex plane. In N-PSK (phase shift keying) 
the amplitude of the baseband signal stays constant, but the phase can take any 
of N discrete values. In DPSK (differential phase shift keying) the information is 
encoded as the difference between phases of two consecutive transmitted symbols. 
The phase can thus take any value, and since the amplitude remains constant, the 
baseband signal distribution is a circle on the complex plane. 

Information maximization BSS requires a nonlinear function that models the cu­
mulative density function (cdf) of the data. This function and its derivative need 
to be differentiable. In the case of a circular complex distribution with uniformly 
distributed phase, there is only one important direction of deviation, the radial 
direction. A smooth cdf G for a circular distribution at the unit circle can be 
constructed using the hyperbolic tangent function as 

G(z) = tanh(w(lzl - 1)) (1) 

and the pdf, differentiated in the radial direction, that is, with respect to Izl is 

8 
g(z) = Bizi tanh(w(lzl - 1)) = w(l - tanh2(w(lzl - 1))) (2) 

where z = x + iy is a complex valued variable, and the parameter w controls the 
steepness of the slope of the tanh function. Note that this is in contrast to more 
commonly used coordinate axis directions to differentiate and to integrate to get 
the pdf from the cdf and vice versa. These functions are plotted in Fig. 1. 

a) CDF b) PDF 
Figure 1: Radial tanh with w=2.0 (equations 1 and 2) . 

Note that we have not been worrying about the pdf integrating to unity. Thus we 
could leave the first multiplicative constant w out of the definition of g. Scaling will 
not be important for our purposes of using these functions as the nonlinearities in 
the information maximization BSS. Note also that when the steepness w approaches 
infinity, the densities approach the ideal density of a DPSK source, the unit circle. 
Many other equally good choices are possible where the ideal density is reached as 
a limit of a parameter value. For example, the radial section of the circular "ridge" 
of the pdf could be a Gaussian. 
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3 The information maximization adaptation equation 
The information maximization adaptation equation to learn the unmixing matrix 
W using the natural gradient is [2] 

AWex (guT + I)W where ~ . - 8 !!Jli.. (3) 
YJ - 8Yi 8Ui 

Vector U = W x denotes a time sample of the separated sources, x denotes the 
corresponding time sample of the observed mixtures, and Yj is the nonlinear function 
approximating the cdf of the data, which is applied to each component of the u. 

Now we can insert (1) into Yj. Making use of {)lzI/{)z = zllzl this yields for 'OJ: 

~ () () (I I)) Uj Yj = -() -() tanh(w Uj -1 = -2WYj-1 -I 
Yj Uj Uj 

(4) 

When (4) is inserted into (3) we get 

<lWex (I - 2 (Wjtanh(WI~~~jl-l»"j) j "H) W (5) 

where (.)j denotes a vector with elements of varying j. Here, we have replaced 
the transpose operator by the hermitian operator H, since we will be processing 
complex data. We have also added a subscript to W as these parameters can be 
learned, too. We will not show the adaptation equations due to lack of space. 

4 Connection to the maximum likelihood approach 
Pearlmutter and Parra have shown that (3) can be derived from the maximum 
likelihood approach to density estimation [6]. The same fact has also been pointed 
out by others, for example, by Cardoso [3]. We will not repeat their straightforward 
derivation, but the final adaptation equation is of the following form: 

AWex - dO WTW = ((fj(Uj; Wj)) uT + I) W. (6) 
dW Ii (Uj; Wj) j 

where U = Wx are the sources separated from mixtures x, and fj(uj;wj) is the pdf 
of source j parametrized by Wj. This is exactly the form of Bell and Sejnowski when 
Ii is taken to be the derivative of the necessary nonlinearity gj, which was assumed 
to be "close" to the true cdf of the source. Thus the information maximization 
approach makes implicit assumptions about the cdf's of the sources in the form of 
the nonlinear squashing function, and does implicit density estimation, whereas in 
the ML approach the density assumptions are made explicit. This fact makes it 
more intuitive and lucid to derive the adaptation for other forms of densities, and 
also to extend it to complex valued variables. 

Now, we can use the circular pdf's (2) depicted in Fig. 1 as the densities Ii (omitting 
scaling) fj(uj;wj) = 1- tanh2 (wj(lujl- 1)). where the steepness Wj acts as the 
single parameter of the density. Now we need to compute its derivative 

fj(uj;wj) = (){) Ii(uj;wj) = -2tanh(wj(IUjl-l))Ii(Uj;Wj)WjIUjl (7) 
Uj Uj 

Inserting this into (6) and changing transpose operators into hermitians yields 

<l W ex (I _ 2 (Wjtanh(WI~~~jl- 1»,,; ) ; "H) W, (8) 

which is exactly the information maximization rule (5). Notice that at this time 
we did not have to ponder what would be an appropriate way to construct the cdf 
from the pdf for complex valued distributions. 
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5 Modifications for QAM and other signal constellations 

So far we have only looked at signals that lie on the unit circle, or that have a 
constant modulus. Now we will take a look at other modulation techniques, in which 
the alphabet is constructed as discrete points on the complex plane. An example 
is the QAM (quadrature amplitude modulation), in which the signal alphabet is a 
regular grid. For example, in 4-QAM, the alphabet could be A4 = {I+i, -I+i, -I-i, 
l-i}, or any scaled version of A4. 

In the ideal pdf of 4-QAM, each symbol is represented just as a point. Again, we 
can construct a smoothed version of the ideal pdf as the sum of "bumps" over all 
of the alphabet where the ideal pdf will be approached by increasing w. 

g(U) = 2:)1 - tanh2(wkl u - Uk!)) 
k 

N ow the density for each source j will be 

!i(Uj; Wj) = 2:)1 - tanh2 (wklu j - Uk!)) 
k 

(9) 

(10) 

where Wj is now a vector of parameters Wk. In practice each Wk would be equal in 
which case a single parameter W will suffice. 

This density function could now be inserted into (6) resulting in the weight update 
equation. However, since !i(Uj; Wj) is a sum of multiple components, f' / f will not 
have a particularly simple form. In essence, for each sample to be processed, we 
would need to evaluate all the components of the pdf model of the constellation. 
This can be avoided by evaluating only the component of the pdf corresponding to 
that symbol of the alphabet U c which is nearest to the current separated sample u. 
This is a very good approximation when W is large. But the approximation does 
not even have to be a good one when W is small, since the whole purpose of using 
"wide" pdf components is to be able to evaluate the gradients on the whole complex 
plane. Figure 2 depicts examples of this approximation with two different values of 
w. The discontinuities are visible at the real and imaginary axes for the smaller w. 

a) w = 1.0 b) w = 5.0 
Figure 2: A piecewise continuous PDF for a 4-QAM source using the tanh function. 

Thus for the 4-QAM, the complex plane will be divided into 4 quadrants, each 
having its own adaptation rule corresponding to the single pdf component in that 
quadrant. Evaluating (6) for each component of the sum gives 

Ll.. W '" (I _ 2 (w. tanh( WI~~j - '"I) Uj \ "H ) W, (11) 

for each symbol k of the alphabet or for the corresponding location Uk on the 
complex plane. This equation can be applied as such when the baseband signal is 
sampled at the symbol rate. With oversampling, it may be necessary to include in 
the pdf model the transition paths between the symbols, too. 



6 Practical simplifications 
To be able to better vectorize the algorithm, it is practical to accumulate ~ W 
from a number of samples before updating the W. This amounts to computing an 
expectation of ~W over a number, say, 10-500 samples of the mixtures. Looking 
at the DPSK case, (5) or (8) the expectation of IUil in the denominator equals one 
"near" convergence since we assume baseband signals that are distributed on the 
unit circle. 

Also, near the solution we can assume that the separated outputs Uj are close to 
true distributions, the exact unit circle, which can be derived from h by increasing 
its steepness. At the limit the tanh will equal the sign function, when the whole 
adaptation, ignoring scaling, is 

(12) 

However, this simplification can only be used when the W is not too far off from the 
correct solution. This is especially true when the number of available samples of the 
mixtures is small. The smooth tanh is needed in the beginning of the adaptation 
to give the correct direction to the gradient in the algorithm since the pdfs of the 
outputs Uj are far from the ideal ones in the beginning. 

7 Performance with static and fading signals 
We have tested the performance of the proposed algorithm both with static and 
dynamic (changing) mixing conditions. In the static case with four DPSK signals 
(8 x oversampled) mixed with random matrices the algorithm needs only about 
80 sample points (corresponding to 10 symbols) of the mixtures to converge to a 
separating solution, whereas a more general algorithm, such as [4], needs about 
800-1200 samples for convergence. We attribute this improvement to making much 
better use of the baseband signal distributions. 

In mobile communications the signals are subject to fading. If there is no direct line 
of sight from the transmitter to the receiver, only multiple reflected and diffracted 
signal components reach the receiver. When either the receiver or the transmitter 
is moving, for example, in an urban environment, these components are changing 
very rapidly. If the phases of the carrier signals in these components are aligned 
the components add constructively at the receiver. If the phases of carriers are 180 
degrees off the components add destructively. 

Note that a half of a wavelength difference in the lengths of the paths of the received 
components corresponds to a 180 degree phase shift. This is only about 0.17 m 
at 900 MHz. Since this small a spatial difference can cause the signal to change 
from constructive interference to a null received signal, the result is that both the 
amplitude and the phase of the received signal vary seemingly randomly at a rate 
that is proportional to relative speeds of the transmitter and the receiver. The 
amplitude of the received signal follows a Rayleigh distribution, hence the name 
Rayleigh fading. As an example, Figure 3 depicts a 0.1 second fragment of the 
amplitude of a fading channel. 
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Figure 3: Amplitude (in dB) of a fading radio channel corresponding to a vehicle speed 
of 60 mph, when the carrier is 900 Mhz. Horizontal axis is time in seconds. 
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With fading sources, the problem is to be able to adapt to changing conditions, 
keeping up with the fading rate. In the signal of Fig. 3 it takes less than 5 millisec­
onds to move from a peak of the amplitude into a deep fade. Assuming a symbol 
rate of 20000 symbols/second, this corresponds to a mere 100 symbols during this 
change. 

We simulated again DPSK sources oversampling by 8 relative to the symbol rate. 
The received sampled mixtures are 

(13) 
j 

where 8j[n] are the source signals, fij[n] represents the fading channel from trans­
mitter j to receiver i, and ni[n] represents the noise observed by receiver i. 

In our experiments, we used a sliding window of 80 samples centered at the current 
sample. The weight matrix update (the gradient) was calculated using all the 
samples of the window, the weight matrix was updated, the window was slid one 
sample forward, and the same was repeated. Using this technique we were able 
to keep up with the fading rate corresponding to 60 mph relative speed of the 
transmitter and the receiver. Figure 4 depicts how the algorithm tracks the fading 
channels in the case of three simultaneous source signals. 
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o 2000 4000 6000 8000 10000 12000 14000 16000 
Figure 4: Separation of three signals subject to fading channels. Top graph: The real 
parts 16 independent fading channels. 2nd graph: The inverse of the instantaneous fading 
conditions (only the real part is depicted) . This is one example of an ideal separation 
solution. 3rd graph: The separation solution tracked by the algorithm. (only the real 
part is depicted). Bottom graph: The resulting signal/interference (S/I) ratio in dB for 
each of the four separated source signals. Horizontal axis is samples. 16000 samples (8 x 
oversampled) corresponds to 0.1 seconds. 

On the average, the S/I to start with is zero. The average output S/I is 20 dB 
for the worst of the three separated signals. Since the mixing is now dynamic 
the instantaneous mixing matrix, as determined by the instantaneous fades, can 
occasionally be singular and cannot be inverted. Thus the signals at this instance 
cannot be separated. In our 0.1 second test signal this occurred four times in the 
three source signal case (9 independent fading paths), at which instances the output 
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SII bounced to or near zero momentarily for one or more of the separated signals. 
Durations of these instances are short, lasting about 15 symbols, and covering about 
3 per cent of the total signal time. 

8 Related work and discussion 
Although the whole field of blind source separation has started around 1985, rather 
surprisingly, no application to radio communications has yet emerged. Most of 
the source separation algorithms are based on higher-order statistics, and these 
should be relatively straightforward to generalize for complex valued baseband data. 
Perhaps the main reason is that all theoretical work has concentrated in the case of 
static mixing, not in the dynamic case. Many communications channels are dynamic 
in nature, and thus rapidly adapting methods are necessary. 

Making use of all available knowledge of the sources, in this case the pdf's of the 
source signals, allows successful adaptation based on a very small number of samples, 
much smaller than by just incorporating the coarse shapes of the pdf's into the 
algorithm. It is not unreasonable to presume this knowledge, on the contrary, the 
modulation method of a communications system must certainly be known. To 
our knowledge, no successful blind separation of signals subject to rapidly varying 
mixing conditions, such as fading, has been reported in the literature. 

Different techniques applied to separation of various simulated radio signals under 
static mixing conditions have been described, for example, in [9, 4]. The maximum 
likelihood method reported recently by Yellin and Friedlander [9] seems to be the 
closest to our approach, but they only apply it to simulated baseband radio signals 
with static mixing conditions. 

It must also be noted that channel time dispersion is not taken into account in 
our current simulations. This is valid only in cases where the delay spread is short 
compared to the inverse of the signal bandwidths. If this is not a valid assumption, 
separation techniques for convolutive mixtures, such as in [7] or [1], need to be 
combined with the methods developed in this paper. 
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