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Abstract 

A learning system composed of linear control modules, reinforce­
ment learning modules and selection modules (a hybrid reinforce­
ment learning system) is proposed for the fast learning of real-world 
control problems. The selection modules choose one appropriate 
control module dependent on the state. This hybrid learning sys­
tem was applied to the control of a stilt-type biped robot. It learned 
the control on a sloped floor more quickly than the usual reinforce­
ment learning because it did not need to learn the control on a 
flat floor, where the linear control module can control the robot. 
When it was trained by a 2-step learning (during the first learning 
step, the selection module was trained by a training procedure con­
trolled only by the linear controller), it learned the control more 
quickly. The average number of trials (about 50) is so small that 
the learning system is applicable to real robot control. 

1 Introduction 

Reinforcement learning has the ability to solve general control problems because it 
learns behavior through trial-and-error interactions with a dynamic environment. 
It has been applied to many problems, e.g., pole-balance [1], back-gammon [2], 
manipulator [3], and biped robot [4]. However, reinforcement learning has rarely 
been applied to real robot control because it requires too many trials to learn the 
control even for simple problems. 

For the fast learning of real-world control problems, we propose a new learning sys­
tem which is a combination of a known controller and reinforcement learning. It is 
called the hybrid reinforcement learning system. One example of a known controller 
is a linear controller obtained by linear approximation. The hybrid learning system 
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will learn the control more quickly than usual reinforcement learning because it does 
not need to learn the control in the state where the known controller can control 
the object. 

A stilt-type biped walking robot was used to test the hybrid reinforcement learning 
system. A real robot walked stably on a flat floor when controlled by a linear 
controller [5]. Robot motions could be approximated by linear differential equations. 
In this study, we will describe hybrid reinforcement learning of the control of the 
biped robot model on a sloped floor, where the linear controller cannot control the 
robot. 

2 Biped Robot 

a) b) 

pitch axis 

Figure 1: Stilt-type biped robot. a) a photograph of a real biped robot, b) a model 
structure of the biped robot. Ul, U2, U3 denote torques. 

Figure I-a shows a stilt-type biped robot [5J. It has no knee or ankle, has 1 m 
legs and weighs 33 kg. It is modeled by 3 rigid bodies as shown in Figure I-b. 
By assuming that motions around a roll axis and those around a pitch axis are 
independent, 5-dimensional differential equations in a single supporting phase were 
obtained. Motions of the real biped robot were simulated by the combination of 
these equations and conditions at a leg exchange period. If angles are approximately 
zero, these equations can be approximated by linear equations. The following linear 
controller is obtained from the linear equations. The biped robot will walk if the 
angles of the free leg are controlled by a position-derivative (PD) controller whose 
desired angles are calculated as follows: 

r{J (J+~+{3 

if; - (J + 2~ 
( -A7) + 6 

A = If (1) 

where~, {3, 6, and 9 are a desired angle between the body and the leg (7°), a constant 
to make up a loss caused by a leg exchange (1.3°), a constant corresponding to 
walking speed, and gravitational acceleration (9.8 ms- 2 ), respectively. 

The linear controller controlled walking of the real biped robot on a flat floor [5]. 
However, it failed to control walking on a slope (Figure 2). In this study, the 
objective of the learning system was to control walking on the sloped floor shown 
in Figure 2-a. 
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Figure 2: Biped robot motion on a sloped floor controlled by the linear controller. 
a) a shape of a floor, b) changes in angular velocity, height of free leg's tip, and 
robot position 

3 Hybrid Reinforcement Learning 
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Figure 3: Hybrid reinforcement learning system. 

We propose a hybrid reinforcement learning system to learn control quickly, The 
hybrid reinforcement learning system shown in Figure 3 is composed of a linear 
control module, a reinforcement learning module, and a selection module. The 
reinforcement learning module and the selection module select an action and a 
module dependent on their respective Q-values. This learning system is similar to 
the modular reinforcement learning system proposed by Tham [6] which was based 
on hierarchical mixtures of the experts (HME) [7]. In the hybrid learning system, 
the selection module is trained by Q-Iearning. 

To combine the reinforcement learning with the linear controller described in (1), 
the ~u!put of the reinforcement learning module is set to k in the adaptable equation 
for (, ( = -kiJ + 6. The angle and the angular velocity of the supporting leg at the 
leg exchange period ('T], iJJi) are used as inputs. The k values are kept constant until 
the next leg exchange. The reinforcement learning module is trained by "Q-sarsa" 
learning [8]. Q values are calculated by CMAC neural networks [9], [10]. 

The Q values for action k (Q c (x, k)) and those for module s selection (Q s (x, s)) are 
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calculated as follows: 

L we(k, m, i, t)y(m, i, t) 
Tn ,i 

Q .. (x, s) = L w .. (s , m, i, t)y(m, i, t), (2) 
m,i 

where we{k,m,i,t) and w .. {s,m,i,t) denote synaptic strengths and y{m,i,t) repre­
sents neurons' outputs in CMAC networks at time t . 

Modules were selected and actions performed according to the £-greedy policy [8] 
with £ = O. 

The temporal difference (TD) error for the reinforcement learning module (fe(t)) is 
calculated by 

10 
r(t) + Qe(x(t + l),per(t + 1)) - Qe{x{t),per{t)) 

fe(t) = 
r{t) + Q .. {x(t + 1), sel(t + 1)) - Qe(x(t),per{t)), 

sel(t) = lin 
sel{t) = rein 
sel(t + 1) = rein 
sel{t) = rein 
sel{t + 1) = lin 

(3) 
where r{t), per{t), sel(t), lin and rein denote reinforcement signals (r{t) = -1 if 
the robot falls down, 0 otherwise), performed actions, selected modules, the linear 
control module and the reinforcement learning module, respectively. 

TD error (f t (t)) calculated by Q .. (x, s) is considered to be a sum of TD error caused 
by the reinforcement learning module and that by the selection module. TD error 
(f .. {t)) used in the selection-module's learning is calculated as follows: 

f .. {t) = ft(t) - fe(t) 
= r{t) + ,Q .. {x(t + 1), sel(t + 1)) - Q .. (x{t), sel{t)) - fe(t), (4) 

where, denotes a discount factor. 

The reinforcement learning module used replacing eligibility traces {e c (k, m, i, t)) 
[11]. Synaptic strengths are updated as follows: 

we(k, m, i, t + 1) wc{k, m, i, t) + Qefc{t)ee{k, m, i, t)/nt 

w .. (s,m,i , t + 1) { w .. (s , m, i, t) + Q .. f .. (t)y(m , i , t)/nt s = sel(t) 
w .. (s,m,i,t) otherwise 

{
1 k=per(t),y(m,i,t)=l 
o k ::f: per(t), y(m, i, t) = 1 
>.ec(k, m, i, t - 1) otherwise 

ee(k, m, i, t) = (5) 

where Qe, Q .. , >. and nt are a learning constant for the reinforcement learning module, 
that for the selection module, decay rates and the number of tHings, respectively. 

In this study, the CMAC used 10 tHings. Each of the three dimensions was di­
vided into 12 intervals. The reinforcement learning module had 5 actions (k = 
0, A/2, A, 3A/2, 2A). The parameter values were Q .. = 0.2, Q e = 0.4, >. = 0.3, 
, = 0.9 and 6 = 0.05. Each run consisted of a sequence of trials, where each 
trial began with robot state of position=O, _5° < () < -2.5°,1 .5° < "I < 3°, cp = 
()+~, 'I/J = cp+~, ( = "1+ 2°,9 = cp = "j; = iJ = ( = 0, and ended with a failure signals 
indicating robot's falling down. Runs were terminated if the number of walking 
steps of three consecutive trials exceeded 100. All results reported are an average 
of 50 runs. 
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Figure 4: Learning profiles for control of walking on the sloped floor. (0) hybrid 
reinforcement learning, (0) 2-step hybrid reinforcement learning, (\7) reinforcement 
learning and (6) HME-type modular reinforcement learning 

4 Results 

Walking control on the sloped floor (Figure 2-a) was first trained by the usual re­
inforcement learning. The usual reinforcement learning system needed many trials 
for successful termination (about 800, see Figure 4(\7)). Because the usual rein­
forcement learning system must learn the control for each input, it requires many 
trials. 

Figure 4(0) also shows the learning curve for the hybrid reinforcement learning. 
The hybrid system learned the control more quickly than the usual reinforcement 
learning (about 190 trials). Because it has a higher probability of succeeding on the 
flat floor, it learned the control quickly. On the other hand, HME-type modular 
reinforcement learning [6] required many trials to learn the control (Figure 4(6)). 
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Figure 5: Biped robot motion controlled by the network trained by the 2-step hybrid 
reinforcement learning. 
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In order to improve the learning rate, a 2-step learning was examined. The 
2-step learning is proposed to separate the selection-module learning from the 
reinforcement-learning-module learning. In the 2-step hybrid reinforcement learn­
ing, the selection module was first trained by a special training procedure in which 
the robot was controlled only by the linear control module. And then the network 
was trained by the hybrid reinforcement learning. The 2-step hybrid reinforcement 
learning learned the control more quickly than the I-step hybrid reinforcement 
learning (Figure 4(0)). The average number of trials were about 50. The hybrid 
learning system may be applicable to the real biped robot. 

Figure 5 shows the biped robot motion controlled by the trained network. On the 
slope, the free leg's lifting was magnified irregularly (see changes in the height of 
the free leg's tip of Figure 5) in order to prevent the reduction of an amplitude of 
walking rhythm. On the upper flat floor, the robot was again controlled stably by 
the linear control module. 
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Figure 6: Dependence of (a) the learning rate and (b) the selection ratio of the 
linear control module on the initial synaptic strength values (wa(rein, m, i, 0)). (a) 
learning rate of (0) the hybrid reinforcement learning, and (0) the 2-step hybrid 
reinforcement learning. The learning rate is defined as the inverse of the number of 
trials where the average walking steps exceed 70. (b) the ratio of the linear-control­
module selection. Circles represent the selection ratio of the linear control module 
when controlled by the network trained by the hybrid reinforcement learning, rect­
angles represent that by the 2-step hybrid reinforcement learning. Open symbols 
represent the selection ratio on the flat floor, closed symbols represent that on the 
slope. 

The dependence of learning characteristics on initial synaptic strengths for 
the reinforcement-learning-module selection (W3 (rein, m, i, 0)) was considered 
(other initial synaptic strengths were 0). If initial values of ws(rein, m, i, t) 
(ws(rein, m, i, 0)) are negative, the Q-values for the reinforcement-learning-module 
selection (Q8(x,rein)) are smaller than Q8(x,lin) and then the linear control mod­
ule is selected for all states at the beginning of the learning. In the case of the 
2-step learning, if Ws (rein, m, i, 0) are given appropriate negative values, the rein­
forcement learning module is selected only around failure states, where Qa(x, lin) is 
trained in the first learning step, and the linear control module is selected otherwise 
at the beginning of the second learning step. Because the reinforcement learning 
module only requires training around failure states in the above condition, the 2-
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step hybrid system is expected to learn the control quickly. Figure 6-a shows the 
dependence of the learning rate on the initial synaptic strength values. The 2-step 
hybrid reinforcement learning had a higher learning rate when Ws (rein, m, i, 0) were 
appropriate negative values (-0.01 '" -0.005). The trained system selected the linear 
control module on the flat floor (more than 80%), and selected both modules on 
the slope (see Figure 6-b), when ws(rein, m, i, 0) were negative. 

Three trials were required in the first learning step of the 2-step hybrid reinforcement 
learning. In order to learn the Q-value function around failure states, the learning 
system requires 3 trials. 

5 Conclusion 

We proposed the hybrid reinforcement learning which learned the biped robot con­
trol quickly. The number of trials for successful termination in the 2-step hybrid 
reinforcement learning was so small that the hybrid system is applicable to the real 
biped robot. Although the control of real biped robot was not learned in this study, 
it is expected to be learned quickly by the 2-step hybrid reinforcement learning. 
The learning system for real robot control will be easily constructed and should be 
trained quickly by the hybrid reinforcement learning system. 

References 

[1] Barto, A. G., Sutton, R. S. and Anderson, C. W.: Neuron like adaptive ele­
ments that can solve difficult learning control problems, IEEE Trans. Sys. Man 
Cybern., Vol. SMC-13, pp. 834-846 (1983). 

[2] Tesauro, G.: TD-gammon, a self-teaching backgammon program, achieves 
master-level play, Neural Computation, Vol. 6, pp. 215-219 (1994). 

[3] Gullapalli, V., Franklin, J. A. and Benbrahim, H.: Acquiring robot skills via 
reinforcement learning, IEEE Control System, Vol. 14, No.1, pp. 13-24 (1994). 

[4] Miller, W. T.: Real-time neural network control of a biped walking robot, IEEE 
Control Systems, Vol. 14, pp. 41-48 (1994). 

[5] Watanabe, A., Inoue, M. and Yamada, S.: Development of a stilts type biped 
robot stabilized by inertial sensors (in Japanese), in Proceedings of 14th Annual 
Conference of RSJ, pp. 195-196 (1996). 

[6] Tham, C. K.: Reinforcement learning of multiple tasks using a hierarchical 
CMAC architecture, Robotics and Autonomous Systems, Vol. 15, pp. 247-274 
(1995). 

[7] Jordan, M. I. and Jacobs, R. A.: Hierarchical mixtures of experts and the EM 
algorithm, Neural Computation, Vol. 6, pp. 181-214 (1994). 

[8] Sutton, R. S.: Generalization in reinforcement learning: successful examples 
using sparse coarse coding, Advances in NIPS, Vol. 8, pp. 1038-1044 (1996). 

[9] Albus, J. S.: A new approach to manipulator control: The cerebellar model 
articulation controller (CMAC), Transaction on ASME J. Dynamical Systems, 
Measurement, and Controls, pp. 220-227 (1975). 

[10] Albus, J. S.: Data storage in the cerebellar articulation controller (CMAC), 
Transaction on ASME J. Dynamical Systems, Measurement, and Controls, pp. 
228-233 (1975). 

[11] Singh, S. P. and Sutton, R. S.: Reinforcement learning with replacing eligibility 
traces, Machine Learning, Vol. 22, pp. 123-158 (1996). 


