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We present a method for the analysis of nonstationary time se­
ries with multiple operating modes. In particular, it is possible to 
detect and to model both a switching of the dynamics and a less 
abrupt, time consuming drift from one mode to another. This is 
achieved in two steps. First, an unsupervised training method pro­
vides prediction experts for the inherent dynamical modes. Then, 
the trained experts are used in a hidden Markov model that allows 
to model drifts. An application to physiological wake/sleep data 
demonstrates that analysis and modeling of real-world time series 
can be improved when the drift paradigm is taken into account. 

1 Introduction 

Modeling dynamical systems through a measured time series is commonly done by 
reconstructing the state space with time-delay coordinates [10]. The prediction of 
the time series can then be accomplished by training neural networks [11]. H, how­
ever, a system operates in multiple modes and the dynamics is drifting or switching, 
standard approaches like multi-layer perceptrons are likely to fail to represent the 
underlying input-output relations. Moreover, they do not reveal the dynamical 
structure of the system. Time series from alternating dynamics of this type can 
originate from many kinds of systems in physics, biology and engineering. 

In [2, 6, 8], we have described a framework for time series from switching dynamics, 
in which an ensemble of neural network predictors specializes on the respective 
operating modes. We now extend the ability to describe a mode change not only 
as a switching but - if appropriate - also as a drift from one predictor to another. 
Our results indicate that physiological signals contain drifting dynamics, which 
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underlines the potential relevance of our method in time series analysis. 

2 Detection of Drifts 

The detection and analysis of drifts is performed in two steps. First, an unsupervised 
(hard-)segmentation method is applied. In this approach, an ensemble of competing 
prediction experts Ii, i = 1, ... , N, is trained on a given time series. The optimal 
choice of function approximators Ii depends on the specific application. In general, 
however, neural networks are a good choice for the prediction of time series [11]. In 
this paper, we use radial basis function (RBF) networks of the Moody-Darken type 
[5] as predictors, because they offer a fast and robust learning method. 

Under a gaussian assumption, the probability that a particular predictor i would 
have produced the observed data y is given by 

(1) 

where K is the normalization term for the gaussian distribution. If we assume that 
the experts are mutually exclusive and exhaustive, we have p(y) = LiP(Y I i)p(i). 
We further assume that the experts are - a priori - equally probable, 

p(i) = liN. (2) 

In order to train the experts, we want to maximize the likelihood that the ensemble 
would have generated the time series. This can be done by a gradient method. For 
the derivative of the log-likelihood log L = log(P(y» with respect to the output of 
an expert, we get 

(3) 

This learning rule can be interpreted as a weighting of the learning rate of each 
expert by the expert's relative prediction performance. It is a special case of the 
Mixtures of Experts [1] learning rule, with the gating network being omitted. Note 
that according to Bayes' rule the term in brackets is the posterior probability that 
expert i is the correct choice for the given data y, i.e. p(i I y). Therefore, we can 
simply write 

alogL . 
ali ex: p(z I y)(y - Ii)· (4) 

Furthermore, we imposed a low-pass filter on the prediction errors Ci = (y - 1i)2 
and used deterministic annealing of f3 in the training process (see [2, 8] for details). 
We found that these modifications can be essential for a successful segmentation 
and prediction of time series from switching dynamics. 

As a prerequisite of this method, mode changes should occur infrequent, i.e. be­
tween two mode changes the dynamics should operate stationary in one mode for a 
certain number of time steps. Applying this method to a time series yields a (hard) 
segmentation of the series into different operating modes together with prediction 
experts for each mode. In case of a drift between two modes, the respective segment 
tends to be subdivided into several parts, because a single predictor is not able to 
handle the nonstationarity. 
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The second step takes the drift into account. A segmentation algorithm is applied 
that allows to model drifts between two stationary modes by combining the two 
respective predictors, Ii and h. The drift is modeled by a weighted superposition 

(5) 

where a(t) is a mixing coefficient and Xt = (Xt,Xt-r, .•. ,Xt_(m_l)r)T is the vector 
of time-delay coordinates of a (scalar) time series {Xt}. Furthermore, m is the 
embedding dimension and T is the delay parameter of the embedding. Note that 
the use of multivariate time series is straightforward. 

3 A Hidden Markov Model for Drift Segmentation 

In the following, we will set up a hidden Markov model (HMM) that allows us 
to use the Viterbi algorithm for the analysis of drifting dynamics. For a detailed 
description of HMMs, see [9] and the references therein. An HMM consists of (1) 
a set S of states, (2) a matrix A = {poi,,} of state transition probabilities, (3) an 
observation probability distribution p(Yls) for each state s, which is a continuous 
density in our case, and (4) the initial state distribution 7r = {7r8 }. 

Let us first consider the construction of S, the set of states, which is the crucial 
point of this approach. Consider a set P of 'pure' states (dynamical modes). Each 
state s E P represents one of the neural network predictors Ik(,) trained in the first 
step. The predictor of each state performs the predictions autonomously. Next, 
consider a set M of mixture states, where each state s E M represents a linear 
mixture of two nets /;.(.) and h(.). Then, given a state s E S, S = P U M, the 
prediction of the overall system is performed by 

;ifsEP 
;ifsEM 

(6) 

For each mixture state s EM, the coefficients a( s) and b( 8) have to be set together 
with the respective network indices i(s) and j(s). For computational feasibility, the 
number of mixture states has to be restricted. Our intention is to allow for drifts 
between any two network outputs of the previously trained ensemble. We choose 
a(s) and b(s) such that 0 < a(s) < 1 and b(s) = 1 - a(s). Moreover, a discrete set 
of a( s) values has to be defined. For simplicity, we use equally distant steps, 

r 
ar = R + 1 ' r = 1, ... , R. (7) 

R is the number of intermediate mixture levels. A given resolution R between any 
two out of N nets yields a total number of mixed states IMI = R· N· (N - 1)/2. 
If, for example, the resolution R = 32 is used and we assume N = 8, then there are 
IMI = 896 mixture states, plus IFI = N = 8 pure states. 

Next, the transition matrix A = {poi,,} has to be chosen. It determines the tran­
sition probability for each pair of states. In principle, this matrix can be found 
using a training procedure, as e.g. the Baum-Welch method [9]. However, this is 
hardly feasible in this case, because of the immense size of the matrix. In the above 
example, the matrix A has (896 + 8)2 = 817216 elements that would have to be 
estimated. Such an exceeding number of free parameters is prohibitive for any adap­
tive method. Therefore, we use a fixed matrix. In this way, prior knowledge about 
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the dynamical system can be incorporated. In our applications either switches or 
smooth drifts between two nets are allowed, in such a way that a (monotonous) drift 
from one net to another is a priori as likely as a switch. All the other transitions are 
disabled by setting P.,. = O. Defining p(y Is) and 7r is straightforward. Following 
eq.(I) and eq.(2), we assume gauflsian noise 

p(y Is) = Ke- f3(1I-g.)'l, (8) 

and equally probable initial states, 7r. = 151-1. 
The Viterbi algorithm [9] can then be applied to the above stated HMM, without 
any further training of the HMM parameters. It yields the drift segmentation of a 
given time series, i.e. the most likely state sequence (the sequence of predictors or 
linear mixtures of two predictors) that could have generated the time series, in our 
case with the assumption that mode changes occur either as (smooth) drifts or as 
infrequent switches. 

4 Drifting Mackey-Glass Dynamics 

As an example, consider a high-dimensional chaotic system generated by the 
Mackey-Glass delay differential equation 

dx(t) _ 01 () 0.2x(t - td) ---- xt +--~----:'-::-::-
dt . 1 + x(t - td)1° . 

(9) 

It was originally introduced as a model of blood cell regulation [4]. Two stationary 
operating modes, A and B, are established by using different delays, td = 17 and 
23, respectively. After operating 100 time steps in mode A (with respect to a 
subsampling step size T :;; 6), the dynamics is drifting to mode B. The drift takes 
another 100 time steps. It is performed by mixing the equations for td = 17 and 
23 during the integration of eq.(9). The mixture is generated according to eq.(5), 
using an exponential drift 

(-4t) a(t) = exp 100 ' t = 1, . .. ,100. (10) 

Then, the system runs stationary in mode B for the following 100 time steps, where­
upon it is switching back to mode A at t = 300, and the loop starts again (Fig.l(a». 
The competing experts algorithm is applied to the first 1500 data points of the gen­
erated time series, using an ensemble of 6 predictors h(Xt), i = 1, ... ,6. The input 
to each predictor is a vector Xt of time-delay coordinates of the scalar time series 
{xt}. The embedding dimension is m = 6 and the delay parameter is T = 1 on the 
subsampled data. The RBF predictors consist of 40 basis functions each. 

After training, nets 2 and 3 have specialized on mode A, nets 5 and 6 on mode B. 
This is depicted in the drift segmentation in Fig.l(b). Moreover, the removal of 
four nets does not increase the root mean squared error (RMSE) of the prediction 
significantly (Fig.l(c», which correctly indicates that two predictors completely 
describe the dynamical system. The sequence of nets to be removed is obtained by 
repeatedly computing the RMSE of all n subsets with n - 1 nets each, and then 
selecting the subset with the lowest RMSE of the respective drift segmentation. 
The segmentation of the remaining nets, 2 and 5, nicely reproduces the evolution 
of the dynamiCS, as seen in Fig.1(d). 
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Figure 1: (a) One 'loop' of the drifting Mackey-Glass time series (see text). (b) 
The resulting drift segmentation invokes four nets. The dotted line indicates the 
evolution of the mixing coefficient a(t) of the respective nets. For example, between 
t = 100 and 200 it denotes a drift from net 3 to net 5, which appears to be exponen­
tial. (c) Increase of the prediction error when predictors are successively removed. 
(d) The two remaining predictors model the dynamics of the time series properly. 

5 Wake/Sleep EEG 

In [7] , we analyzed physiological data recorded from the wake/sleep transition of a 
human. The objective was to provide an unsupervised method to detect the sleep 
onset and to give a detailed approximation of the signal dynamics with a high time 
resolution, ultimately to be used in diagnosis and treatment of sleep disorders. The 
application of the drift segmentation algorithm now yields a more detailed modeling 
of the dynamical system. 

As an example, Fig. 2 shows a comparison of the drift segmentation (R = 32) 
with a manual segmentation by a medical expert. The experimental data was mea­
sured during an afternoon nap of a healthy human. The computer-based analysis 
is performed on a single-channel EEG recording (occipital-l), whereas the manual 
segmentation was worked out using several physiological recordings (EEG, EOG, 
ECG, heart rate, blood pressure, respiration) . 

The two-step drift segmentation method was applied using 8 RBF networks. How­
ever, as shown in Fig. 2, three nets (4, 6, and 8) are finally found by the Viterbi 
algorithm to be sufficient to represent the most likely state sequence. Before the 
sleep onset, at t ~ 3500 (350s) in the manual analysis, a mixture of two wake-state 
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Figure 2: Comparison of the drift segmentation obtained by the algorithm (upper 
plot), and a manual segmentation by a medical expert (middle). Only a single­
channel EEG recording (occipital-l, time resolution O.ls) of an afternoon nap is 
given for the algorithmic approach, while the manual segmentation is based on all 
available measurements. In the manual analysis, WI and W2 indicate two wake­
states (eyes open/closed), and 81 and 82 indicate sleep stage I and II, respectively. 
(n.a.: no assessment, art.: artifacts) 

nets, 6 and 8, performs the best reconstruction of the EEG dynamics. Then, at 
t = 3000 (300s), there starts a drift to net 4, which apparently represents the dy­
namics of sleep stage II (82) . Interestingly, sleep stage I (81) is not represented by 
a separate net but by a linear mixture of net 4 and net 6, with much more weight 
on net 4. Thus, the process of falling asleep is represented as a drift from the state 
of being awake directly to sleep stage II. 

During sleep there are several wake-up spikes indicated in the manual segmentation. 
At least the last four are also clearly indicated in the drift segmentation, as drifts 
back to net 6. Furthermore, the detection ofthe final arousal after t = 12000 (1200s) 
is in good accordance with the manual segmentation: there is a fast drift back to 
net 6 at that point. 

Considering the fact that our method is based only on the recording of a single 
EEG channel and does not use any medical expert knowledge, the drift algorithm 
is in remarkable accordance with the assessment of the medical expert. Moreover, 
it resolves the dynamical structure of the signal to more detail. For a more com­
prehensive analysis of wake/sleep data, we refer to our forthcoming publication 
[3] . 
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6 Summary and Discussion 

We presented a method for the unsupervised segmentation and identification of 
nonstationary drifting dynamics. It applies to time series where the dynamics is 
drifting or switching between different operating modes. An application to phys­
iological wake/sleep data (EEG) demonstrates that drift can be found in natural 
systems. It is therefore important to consider this aspect of data description. 

In the case of wake/sleep data, where the physiological state transitions are far from 
being understood, we can extract the shape of the dynamical drift from wake to 
sleep in an unsupervised manner. By applying this new data analysis method, we 
hope to gain more insights into the underlying physiological processes. Our future 
work is therefore dedicated to a comprehensive analysis of large sets of physiological 
wake/sleep recordings. We expect, however, that our method will be also applicable 
in many other fields. 
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