
A Model of Early Visual Processing 

Laurent Itti, Jochen Braun, Dale K. Lee and Christof Koch 
{itti, achim, jjwen, koch}Gklab.caltech.edu 

Computation & Neural Systems, MSC 139-74 
California Institute of Technology, Pasadena, CA 91125, U.S.A. 

Abstract 

We propose a model for early visual processing in primates. The 
model consists of a population of linear spatial filters which inter­
act through non-linear excitatory and inhibitory pooling. Statisti­
cal estimation theory is then used to derive human psychophysical 
thresholds from the responses of the entire population of units. The 
model is able to reproduce human thresholds for contrast and ori­
entation discrimination tasks, and to predict contrast thresholds in 
the presence of masks of varying orientation and spatial frequency. 

1 INTRODUCTION 

A remarkably wide range of human visual thresholds for spatial patterns appears to 
be determined by the earliest stages of visual processing, namely, orientation- and 
spatial frequency-tuned visual filters and their interactions [18, 19, 3, 22, 9]. Here we 
consider the possibility of quantitatively relating arbitrary spatial vision thresholds 
to a single computational model. The success of such a unified account should 
reveal the extent to which human spatial vision indeed reflects one particular stage 
of processing. Another motivation for this work is the controversy over the neural 
circuits that generate orientation and spatial frequency tuning in striate cortical 
neurons (13, 8, 2]. We think it is likely that behaviorally defined visual filters 
and their interactions reveal at least some of the characteristics of the underlying 
neural circuitry. Two specific problems are addressed: (i) what is the minimal set 
of model components necessary to account for human spatial vision, (ii) is there 
a general decision strategy which relates model responses to behavioral thresholds 
and which obviates case-by-case assumptions about the decision strategy in different 
behavioral situations. To investigate these questions, we propose a computational 
model articulated around three main stages: first, a population of bandpass linear 
filters extracts visual features from a stimulus; second, linear filters interact through 
non-linear excitatory and inhibitory pooling; third, a noise model and decision 
strategy are assumed in order to relate the model's output to psychophysical data. 
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2 MODEL 

We assume spatial visual filters tuned for a variety of orientations e E e and 
spatial periods A E A. The filters have overlapping receptive fields in visual space. 
Quadrature filter pairs, p{~(r and F{~d, are used to compute a phase-independent 
linear energy response, E>.,6, to a visual stimulus S. A small constant background 
activity, f, is added to the linear energy responses: 

E>. 6 = . /(peven * S)2 + (podd * S)2 + f , \I >' ,6 >.,6 

Filters have separable Gaussian tuning curves in orientation and spatial frequency. 
Their corresponding shape in visual space is close to that of Gabor filters, although 
not separable along spatial dimensions. 

2.1 Pooling: self excitation and divisive inhibition 

A model based on linear filters alone would not correctly account for the non-linear 
response characteristics to stimulus contrast which have been observed psychophys­
ically [19]. Several models have consequently introduced a non-linear transducer 
stage following each linear unit [19]. A more appealing possibility is to assume a 
non-linear pooling stage [6, 21, 3, 22]. In this study, we propose a pooling strategy 
inspired by Heeger's model for gain control in cat area VI [5, 6]. The pooled re­
sponse R>.,6 of a unit tuned for (A, 0) is computed from the linear energy responses 
of the entire population: E'Y 

R>. - >',6 + 1] (1) 
,6 - So + L>'I,61 W>.,6(N, OI)E~/,61 

where the sum is taken over the entire population and W>.,6 is a two-dimensional 
Gaussian weighting function centered around (A,O), and 1] a background activity. 
The numerator in Eq. 1 represents a non-linear self-excitation term. The denomi­
nator represents a divisive inhibitory term which depends not only on the activity 
of the unit (A,O) of interest, but also on the responses of other units . We shall see 
in Section 3 that, in contrast to Heeger's model for electrophysiological data in 
which all units contribute equally to the pool, it is necessary to assume that only a 
subpopulation of units with tuning close to (A, 0) contribute to the pool in order to 
account for psychophysical data. Also, we assume, > 15 to obtain a power law for 
high contrasts [7], as opposed to Heeger's physiological model in which, = 15 = 2 
to account for neuronal response saturation at high contrasts. 

Several interesting properties result from this pooling model. First, a sigmoidal 
transducer function - in agreement with contrast discrimination psychophysics - is 
naturally obtained through pooling and thus need not be introduced post-hoc. The 
transducer slope for high contrasts is determined by ,-15, the location of its inflexion 
point by 5, and the slope at this point by the absolute value of, (and 15). Second, the 
tuning curves of the pooled units for orientation and spatial period do not depend 
of stimulus contrast, in agreement with physiological and psychophysical evidence 
[14]. In comparison, a model which assumes a non-linear transducer but no pooling 
exhibits sharper tuning curves for lower contrasts. Full contrast independence of 
the tuning is achieved only when all units participate in the inhibitory pool; when 
only sub-populations participate in the pool, some contrast dependence remains. 

2.2 Noise model: Poisson lX 

It is necessary to assume the presence of noise in the system in order to be able to 
derive psychophysical performance from the responses of the population of pooled 
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units. The deterministic response of each unit then represents the mean of a ran­
domly distributed "neuronal" response which varies from trial to trial in a simulated 
psychophysical experiment . 

Existing models usually assume constant noise variance in order to simplify the 
subsequent decision stage [18]. Using the decision strategy presented below, it is 
however possible to derive psychophysical performance with a noise model whose 
variance increases with mean activity, in agreement with electrophysiology [16]. 
In what follows, Poissoncx noise will be assumed and approximated by a Gaussian 
random variable with variance = meancx (0' is a constant close to unity). 

2.3 Decision strategy 

We use tools from statistical estimation theory to compute the system's behavioral 
response based on the responses of the population of pooled units. Similar tools 
have been used by Seung and Sompolinsky [12] under the simplifying assumption of 
purely Poisson noise and for the particular task of orientation discrimination in the 
limit of an infinite population of oriented units. Here, we extend this framework 
to the more general case in which any stimulus attribute may differ between the 
two stimulus presentations to be discriminated by the model. Let's assume that we 
want to estimate psychophysical performance at discriminating between two stimuli 
which differ by the value of a stimulus parameter ((e.g . contrast, orientation, 
spatial period). 

The central assumption of our decision strategy is that the brain implements an 
unbiased efficient statistic T(R; (), which is an estimator of the parameter ( based 
on the population response R = {R).,I/; A E A, () E 0}. The efficient statistic is 
the one which, among all possible estimators of (, has the property of minimum 
variance in the estimated value of ( . Although we are not suggesting any putative 
neuronal correlate for T, it is important to note that the assumption of efficient 
statistic does not require T to be prohibitively complex; for instance, a maximum 
likelihood estimator proposed in the decision stage of several existing models is 
asymptotically (with respect to the number of observations) a efficient statistic. 

Because T is efficient, it achieves the Cramer-Rao bound [1]. Consequently, when 
the number of observations (i .e. simulated psychophysical trials) is large, 

E[T] = ( and var[T] = 1/3(() 

where E[.] is the mean over all observations, var[.] the variance, and 3(() is the 
Fisher information. The Fisher information can be computed using the noise model 
assumption and tuning properties of the pooled units: for a random variable X 
with probability density f(x; (), it is given by [1]: 

J(() = E [:c In/(X;()r 

For our Poissoncx noise model and assuming that different pooled units are inde­
pendent [15], this translates into: 

One unit R). ,I/: 

All independent units: 

The Fisher information computed for each pooled unit and three types of stimulus 
parameters ( is shown in Figure 1. This figure demonstrates the importance of 
using information from all units in the population rather than from only one unit 
optimally tuned for the stimulus: although the unit carrying the most information 
about contrast is the one optimally tuned to the stimulus pattern, more information 
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about orientation or spatial frequency is carried by units which are tuned to flanking 
orientations and spatial periods and whose tuning curves have maximum slope for 
the stimulus rather than maximum absolute sensitivity. In our implementation, 
the derivatives of pooled responses used in the expression of Fisher information are 
computed numerically. 

orientation 
spatial frequency 

Figure 1: Fisher information computed for contrast, orientation and spatial frequency. 
Each node in the tridimensional meshes represents the Fisher information for the corre­
sponding pooled unit (A, B) in a model with 30 orientations and 4 scales. Arrows indicate 
the unit (A, B) optimally tuned to the stimulus. The total Fisher information in the pop­
ulation is the sum of the information for all units. 

Using the estimate of ( and its variance from the Fisher information, it is pos­
sible to derive psychophysical performance for a discrimination task between two 
stimuli with parameters (1 ~ (2 using standard ideal observer signal discrimination 
techniques [4] . For such discrimination, we use the Central Limit Theorem (in the 
limit of large number of trials) to model the noisy responses of the system as two 
Gaussians with means (1 and (2, and variances lTi = 1/:1((d and lTi = 1/:1((2) 
respectively. A decision criterion D is chosen to minimize the overall probability of 
error; since in our case lT1 =f. lT2 in general, we derive a slightly more complicated 
expression for performance P at a Yes/No (one alternative forced choice) task than 
what is commonly used with models assuming constant noise [18]: 

(2 lTi - (llT~ - lT1lT2J((1 - (2)2 + 2(lTr - lTi) log(lT!/ lT2) 
D = 2 2 

lT1 - lT2 

P= ~+~erf((2-D) + ~erf(D-(l) 
2 4 lT2..J2 4 lT1..J2 

where erf is the Normal error function. The expression for D extends by continuity 
to D = ((2 - (1)/2 when lT1 = lT2 . This decision strategy provides a unified, task­
independent framework for the computation of psychophysical performance from the 
deterministic responses of the pooled units. This strategy can easily be extended to 
allow the model to perform discrimination tasks with respect to additional stimulus 
parameters, under exactly the same theoretical assumptions. 

3 RESULTS 

3.1 Model calibration 

The parameters of the model were automatically adjusted to fit human psychophys­
ical thresholds measured in our laboratory [17] for contrast and orientation discrim­
ination tasks (Figure 2). The model used in this experiment consisted of 60 
orientations evenly distributed between 0 and 180deg. One spatial scale at 4 cycles 
per degree (cpd) was sufficient to account for the data. A multidimensional simplex 
method with simulated annealing overhead was used to determine the best fit of 
the model to the data [10]. The free parameters adjusted during the automatic 
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fits were: the noise level a, the pooling exponents 'Y and &, the inhibitory pooling 
constant 5, and the background firing rates, E and rJ. 

The error function minimized by the fitting algorithm was a weighted average of 
three constraints: 1) least-square error with the contrast discrimination data in 
Figure 2.a; 2) least-square error with the orientation discrimination data in Fig­
ure 2.h; 3) because the data was sparse in the "dip-shaped" region of the curve 
in Figure 2.a, and unreliable due to the limited contrast resolution of the dis­
play used for the psychophysics, we added an additional constraint favoring a more 
pronounced "dip", as has been observed by several other groups [11, 19, 22] . 

Data fits used for model calibration: 
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Figure 2: The model (solid lines) was calibrated using data from two psychophysical 
experiments: (a) discrimination between a pedestal contrast (a.a) and the same pedestal 
plus an increment contrast (a.{3); (b) discrimination between two orientations near vertical 
(b.a and b.{3). After calibration, the transducer function of each pooled unit (c) correctly 
exhibits an accelerating non-linearity near threshold (contrast ~ 1%) and compressive 
non-linearity for high contrasts (Weber's law). We can see in (d) that pooling among 
units with similar tuning properties sharpens their tuning curves. Model parameters were: 
a ~ 0.75,,), ~ 4,«5 ~ 3.5,E ~ 1%, '1 ~ 1.7Hz,S such that transducer inflexion point is 
at 4x detection threshold contrast, orientation tuning FWHM=68deg (full width at half 
maximum), orientation pooling FWHM=40deg. 

Two remaining parameters are the orientation tuning width, (7'8, of the filters and 
the width, (7'We, of the pool. It was not possible from the data in Figure 2 alone 
to unambiguously determine these parameters. However, for any given (7'8, (7'W8 

is uniquely determined by the following two qualitative constraints: first, a small 
pool size is not desirable because it yields contrast-dependent orientation tuning; 
it however appears from the data in Figure 2.h that this tuning should not vary 
much over a wide range of contrasts. The second constraint is qualitatively derived 
from Figure 3.a: for large pool sizes, the model predicted significant interference 
between mask and test patterns even for large orientation differences. Such inter-
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ference was not observed in the data for orientation differences larger than 45deg. 
It consequently seems that a partial inhibitory pool, composed only of a fraction of 
the population of oriented filters with tuning similar to the central excitatory unit, 
accounts best for the psychophysical data. Finally, (76 was fixed so as to yield a 
correct qualitative curve shape for Figure 3.a. 

3.2 Predictions 

We used complex stimuli from masking experiments to test the predictive value 
of the model (Figure 3). Although it was necessary to use some of the qualita­
tive properties of the data seen in Figure 3.a to calibrate the model as detailed 
above, the calibrated model correctly produced a quantitative fit of this data. The 
calibrated model also correctly predicted the complex data of Figure 3.h. 
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Figure 3: Prediction of psychophysical contrast thresholds in the presence of an oblique 
mask. The mask was a 50%-contrast stochastic oriented pattern (a). and the superim­
posed test pattern was a sixth-derivative of Gaussian bar (j3). In (a), threshold elevation 
(i.e. ratio of threshold in the presence of mask to threshold in the absence of mask) was 
measured for varying mask orientation, for mask and test patterns at 4 cycles per degree 
(cpd). In (b), orientation difference between test and mask was fixed to 15deg, and thresh­
old elevation was measured as a function of mask spatial frequency. Solid lines represent 
model predictions, and dashed lines represent unity threshold elevation. 

4 DISCUSSION AND CONCLUSION 

We have developed a model of early visual processing in humans which accounts for 
a wide range of measured spatial vision thresholds and which predicts behavioral 
thresholds for a potentially unlimited number of spatial discriminations. In addi­
tion to orientation- and spatial-frequency-tuned units, we have found it necessary to 
assume two types of interactions between such units: (i) non-linear self-excitation 
of each unit and (ii) divisive normalization of each unit response relative to the 
responses of similarly tuned units. All model parameters are constrained by psy­
chophysical data and an automatic fitting procedure consistently converged to the 
same parameter set regardless of the initial position in parameter space. 

Our two main contributions are the small number of model components and the un i­
.fied, task-independent decision strategy. Rather than making different assumptions 
about the decision strategy in different behavioral tasks, we combine the informa­
tion contained in the responses of all model units in a manner that is optimal for 
any behavioral task. We suggest that human observers adopt a similarly optimal 
decision procedure as they become familiar with a particular task (" task set"). Al­
though here we apply this decision strategy only to the discrimination of stimulus 
contrast, orientation, and spatial frequency, it can readily be generalized to arbi­
trary discriminations such as, for example, the discrimination of vernier targets. 
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So far we have considered only situations in which the same decision strategy is 
optimal for every stimulus presentation. We are now studying situations in which 
the optimal decision strategy varies unpredictably from trial to trial (" decision 
uncertainty"). For example, situations in which the observer attempts to detect an 
increase in either the spatial frequency or the contrast of stimulus. In this way, we 
hope to learn the extent to which our model reflects the decision strategy adopted 
by human observers in an even wider range of situations. We have also assumed 
that the model's units were independent, which is not strictly true in biological 
systems (although the main source of correlation between neurons is the overlap 
between their respective tuning curves, which is accounted for in the model). The 
mathematical developments necessary to account for fixed or variable covariance 
between units are currently under study. 

In contrast to other models of early visual processing [5, 6], we find that the psy­
chophysical data is consistent only with interactions between similarly tuned units 
(e.g., "near-orientation inhibition")' not with interactions between units of very dif­
ferent tuning (e.g., "cross-orientation inhibition") . Although such partial pooling 
does not render tuning functions completely contrast-independent, an additional de­
gree of contrast-independence could be provided by pooling across different spatial 
locations. This issue is currently under investigation. 

In conclusion, we have developed a model based on self-excitation of each unit, 
divisive normalization [5, 6] between similarly tuned units, and an ideal observer 
decision strategy. It was able to reproduce a wide range of human visual thresholds. 
The fact that such a simple and idealized model can account quantitatively for 
a wide range of psychophysical observations greatly strengthens the notion that 
spatial vision thresholds reflect processing at one particular neuroanatomical level. 
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