
Using Expectation to Guide Processing:
A Study of Three Real-World Applications

Shumeet 8aluja
Justsystem Pittsburgh Research Center &

School of Computer Science, Carnegie Mellon University
baluja@cs.cmu.edu

Abstract
In many real world tasks, only a small fraction of the available inputs are important
at any particular time. This paper presents a method for ascertaining the relevance
of inputs by exploiting temporal coherence and predictability. The method pro­
posed in this paper dynamically allocates relevance to inputs by using expectations
of their future values. As a model of the task is learned, the model is simulta­
neously extended to create task-specific predictions of the future values of inputs.
Inputs which are either not relevant, and therefore not accounted for in the model,
or those which contain noise, will not be predicted accurately. These inputs can be
de-emphasized, and, in turn, a new, improved, model of the task created. The tech­
niques presented in this paper have yielded significant improvements for the
vision-based autonomous control of a land vehicle, vision-based hand tracking in
cluttered scenes, and the detection of faults in the etching of semiconductor wafers.

1 Introduction

In many real-world tasks, the extraneous information in the input can be easily confused
with the important features, making the specific task much more difficult. One of the
methods in which humans function in the presence of many distracting features is to selec­
tively attend to only portions of the input signal. A means by which humans select where
to focus their attention is through the use of expectations. Once the important features in
the current input are found, an expectation can be formed of what the important features in
the next inputs will be, as well as where they will be. The importance of features must be
determined in the context of a specific task; different tasks can require the processing of
different subsets of the features in the same input.

There are two distinct uses of expectations. Consider Carnegie Mellon's Navlab autono­
mous navigation system. The road-following module [Pomerleau, 1993] is separate from
the obstacle avoidance modules [Thorpe, 1991]. One role of expectation, in which unex­
pected features are de-emphasized, is appropriate for the road-following module in which
the features to be tracked, such as lane-markings, appear in predictable locations. This use
of expectation removes distractions from the input scene. The second role of expectation,
to emphasize unexpected features, is appropriate for the obstacle avoidance modules. This
use of expectation emphasizes unanticipated features of the input scene.

2 Architectures for Attention

In many studies of attention, saliency maps (maps which indicate input relevance) have
been constructed in a bottom-up manner. For example, in [Koch & Ullman, 1985], a

860 s. Baluja

saliency map, which is not task-specific, is created by emphasizing inputs which are dif­
ferent from their neighbors. An alternate approach, presented in [Clark & Ferrier, 1992],
places mUltiple different, weighted, task-specific feature detectors around the input image.
The regions of the image which contain high weighted sums of the detected features are
the portion of the scene which are focused upon. Top-down knowledge of which features
are used and the weightings of the features is needed to make the procedure task-specific.
In contrast, the goal of this study is to learn which task-specific features are relevant with­
out requiring top-down knowledge.

In this study, we use a method based on Input Reconstruction Reliability Estimation
(IRRE) [Pomerleau, 1993] to detennine which portions of the input are important for the
task. IRRE uses the hidden units of a neural network (NN) to perfonn the desired task and
to reconstruct the inputs. In its original use, IRRE estimated how confident a network's
outputs were by measuring the similarity between the reconstructed and current inputs.
Figure 1 (Left) provides a schematic ofIRRE. Note that the weights between the input and
hidden layers are trained to reduce both task and reconstruction error.

Because the weights between the input and hidden layers are trained to reduce both task
and reconstruction error, a potential drawback of IRRE is the use of the hidden layer to
encode all of the features in the image, rather than only the ones required for solving the
particular task [Pomerleau, 1993]. This can be addressed by noting the following: if a
strictly layered (connections are only between adjacent layers) feed-forward neural net­
work can solve a given task, the activations of the hidden layer contain, in some fonn, the
important infonnation for this task from the input layer. One method of detennining what
is contained in the hidden layer is to attempt to reconstruct the original input image, based
solely upon the representation developed in the hidden layer. Like IRRE, the input image
is reconstructed from the activations of the units in the hidden layer. Unlike IRRE, the hid­
den units are not trained to reduce reconstruction error, they are only trained to solve the
panicular task. The network's allocation of its limited representation capacity at the hid­
den layer is an indicator of what it deems relevant to the task. Information which is not rel­
evant to the task will not be encoded in the hidden units. Since the reconstruction of the
inputs is based solely on the hidden units' activations, and the irrelevant portions of the
input are not encoded in the hidden units' activations, the inputs which are irrelevant to the
task cannot be reconstructed. See Figure I(Right).

By measuring which inputs can be reconstructed accurately, we can ascertain which inputs
the hidden units have encoded to solve the task. A synthetic task which demonstrates this
idea is described here. Imagine being given a lOxlO input retina such as shown in
Figure 2a&b. The task is to categorize many such examples into one of four classes.
Because of the random noise in the examples, the simple underlying process, of a cross
being present in one of four locations (see Figure 2c), is not easily discernible, although it
is the feature on which the classifications are to be based. Given enough examples, the NN
will be able to solve this task. However, even after the model of the task is learned, it is
difficult to ascertain to which inputs the network is attending. To detennine this, we can
freeze the weights in the trained network and connect a input-reconstruction layer to the
hidden units, as shown in Figure 1 (Right). After training these connections, by measuring
where the reconstruction matches the actual input, we can detennine which inputs the net­
work has encoded in its hidden units, and is therefore attending. See Figure 2d.

weights
trained to
reduce task
error only

error.

weights
trained to reduce
reconstruction
error only.

weights
trained to
reduce task
error only.

Figure 1: (Left) IRRE. (Right) Modified IRRE.

"-weights
trained to reduce
reconstruction
error only.

Using Expectation to Guide Processing 861

B: C: D:

2 +
3 4 ir+

Figure 2: (A & B): Samples of training data (cross appears in position 4 & 1 respectively). Note the large
amounts of noise. (C): The underlying process puts a cross in one of these four locations. (D): The black
crosses are where the reconstruction matched the inputs; these correspond exactly to the underlying process.

IRRE and this modified IRRE are related to auto-encoding networks [Cottrell, 1990] and
principal components analysis (PeA). The difference between auto-encoding networks
and those employed in this study is that the hidden layers of the networks used here were
trained to perfonn well on the specific task, not to reproduce the inputs accurately.

2.1 Creating Expectations

A notion of time is necessary in order to focus attention in future frames. Instead of recon­
structing the current input, the network is trained to predict the next input; this corre­
sponds to changing the subscript in the reconstruction layer of the network shown in
Figure 1 (Right) from t to t+ 1. The prediction is trained in a supervised manner, by using
the next set of inputs in the time sequence as the target outputs. The next inputs may con­
tain noise or extraneous features. However, since the hidden units only encode infonnation
to solve the task, the network will be unable to construct the noise or extraneous features
in its prediction.

To this point, a method to create a task-specific expectation of what the next inputs will be
has been described. As described in Section 1, there are two fundamentally different ways
in which to interpret the difference between the expected next inputs and the actual next
inputs. The first interpretation is that the difference between the expected and the actual
inputs is a point of interest because it is a region which was not expected. This has appli­
cations in anomaly detection; it will be explored in Section 3.2. In the second interpreta­
tion, the difference between the expected and actual inputs is considered noise. Processing
should be de-emphasized from the regions in which the difference is large. This makes the
assumption that there is enough infonnation in the previous inputs to specify what and
where the important portions of the next image will be. As shown in the road-following
and hand-tracking task, this method can remove spurious features and noise.

3 Real-World Applications

1bree real-world tasks are discussed in this section. The first, vision-based road following,
shows how the task-specific expectations developed in the previous section can be used to
eliminate distractions from the input. The second, detection of anomalies in the plasma­
etch step of wafer fabrication, shows how expectations can be used to emphasize the unex­
pected'features in the input. The third, visual hand-tracking, demonstrates how to incorpo­
rate a priori domain knowledge about expectations into the NN.

3.1 Application 1: Vision-Based Autonomous Road Following

In the domain of autonomous road following, the goal is to control a robot vehicle by ana­
lyzing the image of the road ahead. The direction of travel should be chosen based on the
location of important features like lane markings and r~ad edges. On highways and dirt
roads, simple techniques, such as feed-forward NNs, have worked well for mapping road
images to steering commands [Pomerleau, 1993]. However, on city streets, where there
are distractions like old lane-.narkings, pedestrians, and heavy traffic, these methods fail.

The purpose of using attention in this domain is to eliminate features of the road which the
NN may mistake as lane markings. Approximately 1200 images were gathered from a

862

E

F

Figure 3: (Top) : Four samples of training images . Left most
shows the position of the lane-marking which was hand-marked. G
(Right): In each triplet: Left: raw input imagtt. Middle: the
network's prediction of the inputs at time t; this prediction was
made by a network with input ofimaget_I ' Right: a pixel-by-pixel
filtered image (see text). This image is used as the input to the NN.

S. Baluja

camera mounted on the left side of the CMU-Navlab 5 test vehicle, pointed downwards
and slightly ahead of the vehicle. The car was driven through city and residential neigh­
borhoods around Pittsburgh, PA. The images were gathered at 4-5 hz. The images were
subsampled to 30x32 pixels. In each of these images, the horizontal position of the lane
marking in the 20th row of the input image was manually identified. The task is to produce
a Gaussian of activation in the outputs centered on the horizontal position of the lane
marking in the 20th row of the image, given the entire input image. Sample images and
target outputs are shown in Figure 3. In this task, the ANN can be confused by road edges
(Figure 3a), by extraneous lane markings (Figure 3b), and reflections on the car itself
(since the camera was positioned on the side of the car), as shown in Figure 3c.

The network architecture shown in Figure 4 was used; this is the same architecture as in
Figure l(right) with the feedback shown. The feedback is used during both training and
simulation. In each time-step, a steering direction and a prediction of the next inputs is
produced. For each time-step, the magnitude of the difference' between the input's
expected value (computed in the previous time-step) and its actual value is computed.
Each input pixel can be moved towards its background value l in proportion to this differ­
ence-value. The larger the difference value, the more weight is given to the background
value. If the difference value is small, the actual inputs are used. This has the effect of de­
emphasizing the unexpected inputs.

The results of using this method were very promising. The lane tracker removed distract­
ing features from the images. In Figure 3G, a distracting lane-marking is removed: the
lane marker on the right was correctly tracked in images before the distractor lane-marker
appeared. In Figure 3F, a passing car is de-emphasized: the network does not have a model
to predict the movement of passing cars, since these are not relevant for the lane-marker
detection task. In Figure 3E, the side of the road appears brighter than expected; therefore
it is de-emphasized. Note that the expectation-images (shown in the middle of each triplet

weights
trained to
reduce task
error only.

__ weights
I ... ~~.... --- trained to reduce

prediction
error only.

m~tii;:mrt;,._--1 Weight bkgd.
and actual
inputs according to
difference ima e.

Signal Transfer
(Connections are not trainable)

Delayed I time step

t---t Difference
between
inputst &
predicted in uts

Figure 4:
Architecture used
to track the lane
marking in
cluttered scenes.

I. A simple estimate of the background value for each pixel is its average activation across the training set. For
the road-following domain, it is possible to use a background activation of 0.0 (when the entire image is scaled to
activations of +1.0 to -1.0) since the road often appears as intermediate grays.

Using Expectation to Guide Processing 863

in Figure 3) show that the expected lane-marker and road edge locations are not precisely
defined. This is due to the training method, which attempts to model the many possible
transitions from one time step to the next to account for inter- and intra-driver variability
with a limited training set [Baluja, 1996].

In summary, by eliminating the distractions in the input images, the lane-tracker with the
attention mechanisms improved performance by 20% over the standard lane-tracker, mea­
sured on the difference between the estimated and hand-marked position of the lane­
marker in each image. This improvement was seen on multiple runs, with random initial
weights in the NN and different random translations chosen for the training images.

3.2 Application 2: Fault Detection in the Plasma-Etch Wafer Fabrication

Plasma etch is one of the many steps in the fabrication of semiconductor wafers. In this
study, the detection of four faults was attempted. Descriptions of the faults can be found in
[Baluja, 1996][Maxion, 1996]. For the experiments conducted here, only a single sensor
was used, which measured the intensity of light emitted from the plasma at the 520nm
wavelength. Each etch was sampled once a second, providing approximately 140 samples
per wafer wavefonn. The data-collection phase of this experiment began on October 25,
1994, and continued until April 4, 1995. The detection of faults is a difficult problem
because the contamination of the etch chamber and the degradation parts keeps the sen­
sor's outputs, even for fault-free wafers, changing over time. Accounting for machine state
should help the detection process.

Expectation is used as follows: Given the waveform signature of waferT_I' an expectation
of waferT can be fonned. The input to the prediction-NN is the wavefonn signature of
waferT_I; the output is the prediction of the signature of waferT. The target output for each
example is the signature of the next wafer in sequence (the full 140 parameters). Detection
of the four faults is done with a separate network which used as input: the expectation of
the wafer's wavefonn, the actual wafer's wavefonn, and the point-by-point difference of
the two. In this task, the input is not filtered as in the driving domain described previously;
the values of the point-by-point difference vector are used as extra inputs.

The perfonnance of many methods and architectures were compared on this task, details
can be found in [Baluja, 1996]. The results using the expectation based methods was a
98.7% detection rate, 100% classification rate on the detected faults (detennining which of
the four types of faults the detected fault was), and a 2.3% false detection rate. For com­
parison, a simple perceptron had an 80% detection rate, and a 40% false-detection rate. A
fully-connected network which did not consider the state of the machine achieved a 100%
detection rate, but a 53% false detection rate. A network which considered state by using
the last-previous no-fault wafer for comparison with the current wafer (instead of an
expectation for the current wafer) achieved an 87.9% detection rate, and a 1.5% false­
detection rate. A variety of neural and non-neural methods which examined the differ­
ences between the expected and current wafer, as well those which examined the differ­
ences between the last no-fault wafer and the current wafer, perfonned poorly. In
summary, methods which did not use expectations were unable to obtain the false-posi­
tives and detection rates of the expectation-based methods.

3.3 Application 3: Hand-Tracking in Cluttered Scenes

In the tasks described so far, the transition rules were learned by the NN. However, if the
transition rules had been known a priori, processing could have been directed to only the
relevant regions by explicitly manipulating the expectations. The ability to incorporate a
priori rules is important in many vision-based tasks. Often the constraints about the envi­
ronment in which the tracking is done can be used to limit the portions of the input scene
which need to be processed. For example, consider visually tracking a person's hand.
Given a fast camera sampling rate, the person's hand in the current frame will be close to

864

A. B.

S. Baluja

Figure 5:
Typical input images used for
the hand-tracking experiments.
The target is to track the
subject's right hand. Without
expectation, in (A) both hands
were found in X outputs, and
the wrong hand was found in
the Y outputs. In (8) Subject's
right hand and face found in
the X outputs.

where it appeared in the previous frame. Although a network can learn this constraint by
developing expectations of future inputs (as with the NN architecture shown in Figure 4),
training the expectations can be avoided by incorporating this rule directly.

In this task, the input layer is a 48*48 image. There are two output layers of 48 units; the
desired outputs are two gaussians centered on the (X,Y) position of the hand to be tracked.
See Figure 5. Rather than creating a saliency map based upon the difference between the
actual and predicted inputs, as was done with autonomous road following, the saliency
map was explicitly created with the available domain knowledge. Given the sampling rate
of the camera and the size of the hand in the image, the salient region for the next time­
step was a circular region centered on the estimated location of the hand in the previous
image. The activations of the inputs outside of the salient region were shifted towards the
background image. The activations inside the salient region were not modified. After
applying the saliency map to the inputs, the filtered inputs were fed into the NN.

This system was tested in very difficult situations; the testing set contained images of a
person moving both of his hands and body throughout the sequence (see Figure 5). There­
fore, both hands and body are clearly visible in the difference images used as input into
the network. All training was done on much simpler training sets in which only a single
hand was moving. To gauge the perfonnance of an expectation-based system, it was com­
pared to a system which used the following post-processing heuristics to account for tem­
poral coherence. First, before a gaussian was fit to either of the output layers, the
activation of the outputs was inversely scaled with the distance away from the location of
the hand in the previous time step. This reduces the probability of detecting a hand in a
location very different than the previous detection. This helps when both hands are
detected, as shown in Figure 5. The second heuristic was that any predictions which differ
from the previous prediction by more than half of the dimension of the output layer were
ignored, and the previous prediction used instead. See Table I for the results. In summary,
by using the expectation based methods, perfonnance improved from 66% to 90% when
tracking the left hand, and 52% to 91 % when tracking the right hand.

Table I: Performance: Number of frames in which each hand was located (283 total images).

Target: Find Left Hand Target: Find Right Hand

Method Which Hand Was Found Which Hand Was Found

% Correct L R None % Correct L R None

No Heuristics, No Expect. 52% 146 44 93 16% 143 47 93
Heuristics 66% 187 22 74 52% 68 147 68

Expectation 91% 258 3 22 90% 3 255 25
Expectation + Heuristics 90% 256 3 24 91% 2 257 24

[Nowlan & Platt, 1995] presented a convolutional-NN based hand-tracker which used sep­
arate NNs for intensity and differences images with a rule-based integration of the multi­
ple network outputs. The integration of this expectation-based system should improve the
performance of the difference-image NN.

Using Expectation to Guide Processing 865

4 Conclusions

A very closely related procedure to the one described in this paper is the use of Kalman
Filters to predict the locations of objects of interest in the input retina. For example, Dick­
manns uses the prediction of the future state to help guide attention by controlling the
direction of a camera to acquire accurate position of landmarks [Dickmanns, 1992].
Strong models of the vehicle motion, the appearance of objects of interest (such as the
road, road-signs, and other vehicles), and the motion of these objects are encoded in the
system. The largest difference in their system and the one presented here is the amount of
a priori knowledge that is used. Many approaches which use Kalman Filters require a
large amount of problem specific information for creating the models. In the approach pre­
sented in this paper, the main object is to automatically learn this information from exam­
ples. First, the system must learn what the important features are, since no top-down
information is assumed. Second, the system must automatically develop the control strat­
egy from the detected features. Third, the system must also learn a model for the move­
ments of all of the relevant features.

In deciding whether the approaches described in this paper are suitable to a new problem,
two criteria must be considered. First, if expectation is to be used to remove distractions
from the inputs, then given the current inputs, the activations of the relevant inputs in the
next time step must be predictable while the irrelevant inputs are either unrelated to the
task or are unpredictable. In many visual object tracking problems, the relevant inputs are
often predictable while the distractions are not. In the cases in which the distractions are
predictable, if they are unrelated to the main task, these methods can work. When using
expectation to emphasize unexpected or potentially anomalous features, the activations of
the relevant inputs should be unpredictable while the irrelevant ones are predictable. This
is often the case for anomaly/fault detection tasks. Second, when expectations are used as
a filter, it is necessary to explicitly define the role of the expected features. In particular, it
is necessary to define whether the expected features should be considered relevant or irrel­
evant, and therefore, whether they should be emphasized or de-emphasized, respectively.

We have demonstrated the value of using task-specific expectations to guide processing in
three real-world tasks. In complex, dynamic, environments, such as driving, expectations
are used to quickly and accurately discriminate between the relevant and irrelevant fea­
tures. For the detection of faults in the plasma-etch step of semiconductor fabrication,
expectations are used to account for the underlying drift of the process. Finally, for vision­
based hand-tracking, we have shown that a priori knowledge about expectations can be
easily integrated with a hand-detection model to focus attention on small portions of the
scene, so that distractions in the periphery can be ignored.

Acknowledgments

The author would like to thank Dean Pomerleau, Takeo Kanade, Tom Mitchell and Tomaso Poggio
for their help in shaping this work.

References

Baluja, S. 1996, Expectation-Based Selective Attention. Ph.D. Thesis, School of Computer Science, CMU.
Clark, J. & Ferrier, N (1992), Attentive Visual Servoing, in: Active Vision. Blake & Yuille, (MIT Press) 137-154.
Cottrell, G.W., 1990, Extracting Features from Faces using Compression Network, Connectionist Models, Mor­
gan Kaufmann 328-337.
Dickmanns, 1992, Expectation-based Dynamic Scene Understanding, in: Active Vision. A. Blake & A.Yuille,
MIT Press .
Koch, C. & Ullman, S. (1985) "Shifts in Selective Visual Attention: Towards the Underlying Neural Circuitry",
in: Human Neurobiology 4 (1985) 219-227.
Maxion, R. (1995) The Semiconductor Wafer Plasma-Etch Data Set.
Nowlan, S. & Platt, J., 1995, "A Convolutional Neural Network Hand Tracker". NIPS 7. MIT Press . 901-908.
Pomerleau, D.A., 1993. Neural Network Perception for Mobile Robot Guidance, Kluwer Academic.
Thorpe, C., 1991, Outdoor Visual Navigation for Autonomous Robots, in: Robotics and Autonomous Systems 7.

