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We are frequently called upon to perform multiple tasks that com­
pete for our attention and resource. Often we know the optimal 
solution to each task in isolation; in this paper, we describe how 
this knowledge can be exploited to efficiently find good solutions 
for doing the tasks in parallel. We formulate this problem as that of 
dynamically merging multiple Markov decision processes (MDPs) 
into a composite MDP, and present a new theoretically-sound dy­
namic programming algorithm for finding an optimal policy for the 
composite MDP. We analyze various aspects of our algorithm and 
illustrate its use on a simple merging problem. 

Every day, we are faced with the problem of doing mUltiple tasks in parallel, each 
of which competes for our attention and resource. If we are running a job shop, 
we must decide which machines to allocate to which jobs, and in what order, so 
that no jobs miss their deadlines. If we are a mail delivery robot, we must find the 
intended recipients of the mail while simultaneously avoiding fixed obstacles (such 
as walls) and mobile obstacles (such as people), and still manage to keep ourselves 
sufficiently charged up. 

Frequently we know how to perform each task in isolation; this paper considers how 
we can take the information we have about the individual tasks and combine it to 
efficiently find an optimal solution for doing the entire set of tasks in parallel. More 
importantly, we describe a theoretically-sound algorithm for doing this merging 
dynamically; new tasks (such as a new job arrival at a job shop) can be assimilated 
online into the solution being found for the ongoing set of simultaneous tasks. 
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1 The Merging Framework 

Many decision-making tasks in control and operations research are naturally formu­
lated as Markov decision processes (MDPs) (e.g., Bertsekas & Tsitsikiis, 1996). Here 
we define MDPs and then formulate what it means to have multiple simultanous 
MDPs. 

1.1 Markov decision processes (MDPs) 

An MDP is defined via its state set 8, action set A, transition probability matrices 
P, and payoff matrices R. On executing action a in state s the probability of 
transiting to state s' is denoted pa(ss') and the expected payoff associated with 
that transition is denoted Ra (ss'). We assume throughout that the payoffs are 
non-negative for all transitions. A policy assigns an action to each state of the 
MDP. The value of a state under a policy is the expected value of the discounted 
sum of payoffs obtained when the policy is followed on starting in that state. The 
objective is to find an optimal policy, one that maximizes the value of every state. 
The optimal value of state s, V* (s), is its value under the optimal policy. 

The optimal value function is the solution to the Bellman optimality equations: for 
all s E 8 , V(s) = maxaEA(Esl pa(ss') [Ra (ss') +/V(s'))), where the discount factor 
o ~ / < 1 makes future payoffs less valuable than more immediate payoffs (e.g., 
Bertsekas & Tsitsiklis, 1996). It is known that the optimal policy 7r* can be de­
termined from V* as follows: 7r*(s) = argmaxaEA(Esl pa(ss')[Ra(ss') +/V*(s'))). 
Therefore solving an MDP is tantamount to computing its optimal value function. 

1.2 Solving MDPs via Value Iteration 

Given a model (8, A, P, R) of an MDP value iteration (e.g., Bertsekas & Tsitsikiis, 
1996) can be used to determine the optimal value function. Starting with an initial 
guess, Vo, iterate for all s Vk+1(S) = maxaEA(EsIES pa(ss')[Ra(ss') + /Vk(S'))). It 
is known that maxsES 1Vk+1 (s) - V*(s)1 ~ / maxsES IVk(S) - V*(s)1 and therefore 
Vk converges to V* as k goes to infinity. Note that a Q-value (Watkins, 1989) based 
version of value iteration and our algorithm presented below is also easily defined. 

1.3 Multiple Simultaneous MDPs 

The notion of an optimal policy is well defined for a single task represented as 
an MDP. If, however, we have multiple tasks to do in parallel, each with its own 
state, action, transition probability, and payoff spaces, optimal behavior is not 
automatically defined. We will assume that payoffs sum across the MDPs, which 
means we want to select actions for each MDP at every time step so as to maximize 
the expected discounted value of this summed payoff over time. If actions can be 
chosen independently for each MDP, then the solution to this "composite" MDP 
is obvious - do what's optimal for each MDP. More typically, choosing an action 
for one MDP constrains what actions can be chosen for the others. In a job shop 
for example, actions correspond to assignment of resources, and the same physical 
resource may not be assigned to more than one job simultaneously. 

Formally, we can define a composite MDP as a set of N MDPs {Mi}f. We will use 
superscripts to distinguish the component MDPs, e.g., 8i , Ai, pi, and Ri are the 
state, action, transition probability and payoff parameters of MDP Mi. The state 
space of the composite MDP, 8, is the cross product of the state spaces of the com­
ponent MDPs, i.e., 8 = 8 1 X 8 2 X ... X 8 N . The constraints on actions implies that 
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the action set of the composite MDP, A, is some proper subset of the cross product 
of the N component action spaces. The transition probabilities and the payoffs of 
the composite MDP are factorial because the following decompositions hold: for 
all s, s' E S and a E A, pa(ss') = nf:lpai (SiSi') and Ra(ss') = l:~l ~i (SiSi'). 
Singh (1997) has previously studied such factorial MDPs but only for the case of a 
fixed set of components. 

The optimal value function of a composite MDP is well defined, and satisfies the 
following Bellman equation: for all s E S, 

N 

V(s) = ~a:L (nf:lpa'(sisi')[LRa\sisi')+'YV(s')]). (1) 
~ES i=l 

Note that the Bellman equation for a composite MDP assumes an identical discount 
factor across component MDPs and is not defined otherwise. 

1.4 The Dynamic Merging Problem 

Given a composite MDP, and the optimal solution (e.g. the optimal value function) 
for each of its component MDPs, we would like to efficiently compute the optimal 
solution for the composite MDP. More generally, we would like to compute the 
optimal composite policy given only bounds on the value functions of the component 
MDPs (the motivation for this more general version will become clear in the next 
section). To the best of our knowledge, the dynamic merging question has not been 
studied before. 

Note that the traditional treatment of problems such as job-shop scheduling would 
formulate them as nonstationary MDPs (however, see Zhang and Dietterich, 1995 
for another learning approach). This normally requires augmenting the state space 
to include a "time" component which indexes all possible state spaces that could 
arise (e.g., Bertsekas, 1995). This is inefficient, and potentially infeasible unless we 
know in advance all combinations of possible tasks we will be required to solve. One 
contribution of this paper is the observation that this type of nonstationary problem 
can be reformulated as one of dynamically merging (individually) stationary MDPs. 

1.4.1 The naive greedy policy is suboptimal 

Given bounds on the value functions of the component MDPs, one heuristic com­
posite policy is that of selecting actions according to a one-step greedy rule: 

N 

7I"(s) = argmax(l: nf:,lpai (Si si')[l:(Rai (si, ai) + 'YXi(Si'))]), 
a 8' i=l 

where Xi is the upper or lower bound of the value function, or the mean of the 
bounds. It is fairly easy however, to demonstrate that these policies are substantially 
suboptimal in many common situations (see Section 3). 

2 Dynamic Merging Algorithm 

Consider merging N MDPs; job-shop scheduling presents a special case of merging 
a new single MDP with an old composite MDP consisting of several factor MDPs. 
One obvious approach to finding the optimal composite policy would be to directly 
perform value iteration in the composite state and action space. A more efficient 
approach would make use of the solutions (bounds on optimal value functions) of 
the existing components; below we describe an algorithm for doing this. 
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Our algorithm will assume that we know the optimal values, or more generally, 
upper and lower bounds to the optimal values of the states in each component 
MDP. We use the symbols Land U for the lower and upper bounds; if the optimal 
value function for the ith factor MDP is available then Li = Ui = V·,i.l 

Our algorithm uses the bounds for the component MDPs to compute bounds on 
the values of composite states as needed and then incrementally updates and nar­
rows these initial bounds using a form of value iteration that allows pruning of 
actions that are not competitive, that is, actions whose bounded values are strictly 
dominated by the bounded value of some other action. 

Initial State: The initial composite state So is composed from the start state of 
all the factor MOPs. In practice (e.g. in job-shop scheduling) the initial composite 
state is composed of the start state of the new job and whatever the current state 
of the set of old jobs is. Our algorithm exploits the initial state by only updating 
states that can occur from the initial state under competitive actions. 

Initial Value Step: When we need the value of a composite state S for the first 
time. we compute upper and lower bounds to its optimal value as follows: L(s) = 

max!1 Li(Si), and U(s) = E~1 Ui(S). 

Initial Update Step: We dynamically allocate upper and lower bound storage 
space for composite states as we first update them. We also create the initial set of 
competitive actions for S when we first update its value as A(s) = A. As successive 
backups narrow the upper and lower bounds of successor states, some actions will 
no longer be competitive, and will be eliminated from further consideration. 

Modified Value Iteration Algorithm: 

At step t if the state to be updated is St: 

Lt+l(St) - max (L pa(sts')[Ra(st. s') + -yLt(s')]) 
aEAt{st} J 

s 

Ut+l(St) - max (L pa(sts')[Ra(st, s') + -yUt(s')]) 
aEAt(st} 

s' 

At+l (St) = U a E At(st) AND L pa(sts')[Ra(st, s') + -yUt(s')] 

St+l 

s' 

;::: argmax L pb(sts')[Rb(st, s') + -yLt(s')] 
bEAt(St) 8' 

{ So if s~ is terminal for all Si E s 
s' E S such that 3a E At+1 (St), pa(StS') > 0 otherwise 

The algorithm terminates when only one competitive action remains for each state, 
or when the range of all competitive actions for any state are bounded by an indif­
ference parameter €. 

To elaborate, the upper and lower bounds on the value of a composite state are 
backed up using a form of Equation 1. The set of actions that are considered 
competitive in that state are culled by eliminating any action whose bounded values 
is strictly dominated by the bounded value of some other action in At(st). The 
next state to be updated is chosen randomly from all the states that have non-zero 

1 Recall that unsuperscripted quantities refer to the composite MDP while superscripted 
quantities refer to component MDPs. Also, A is the set of actions that are available to the 
composite MDP after taking into account the constraints on picking actions simultaneously 
for the factor MDPs. 
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pro babili ty of occuring from any action in At+! (St) or, if St is the terminal state of 
all component MDPs, then StH is the start state again. 

A significant advantage of using these bounds is that we can prune actions whose 
upper bounds are worse than the best lower bound. Only states resulting from 
remaining competitive actions are backed up. When only one competitive action 
remains, the optimal policy for that state is known, regardless of whether its upper 
and lower bounds have converged. 

Another important aspect of our algorithm is that it focuses the backups on states 
that are reachable on currently competitive actions from the start state. The com­
bined effect of only updating states that are reachable from the start state and 
further only those that are reachable under currently competitive actions can lead 
to significant computational savings. This is particularly critical in scheduling, 
where jobs proceed in a more or less feedforward fashion and the composite start 
state when a new job comes in can eliminate a large portion of the composite state 
space. Ideas based on Kaelbling's (1990) interval-estimation algorithm and Moore 
& Atkeson's (1993) prioritized sweeping algorithm could also be combined into our 
algorithm. 

The algorithm has a number of desirable "anytime" characteristics: if we have to 
pick an action in state So before the algorithm has converged (while multiple com­
petitive actions remain), we pick the action with the highest lower bound. If a new 
MDP arrives before the algorithm converges, it can be accommodated dynamically 
using whatever lower and upper bounds exist at the time it arrives. 

2.1 Theoretical Analysis 

In this section we analyze various aspects of our algorithm. 

UpperBound Calculation: For any composite state, the sum of the optimal 
values of the component states is an upper bound to the optimal value of the 
composite state, i.e., V*(s = SI, S2, .. . , SN) ~ 2:~1 V*,i(Si). 

If there were no constraints among the actions of the factor MDPs then V* (s) would 
equal L~l V*,i(Si) because of the additive payoffs across MDPs. The presence of 
constraints implies that the sum is an upper bound. Because V*,i(S') ~ Ut(Si) the 
result follows. 

LowerBound Calculation: For any composite state, the maximum of the optimal 
values of the component states is a lower bound to the optimal value of the composite 
states, i.e., V*(s = SI, S2, . .. ,SN) ~ max~1 V*,i(Si). 

To see this for an arbitrary composite state s, let the MDP that has the largest com­
ponent optimal value for state s always choose its component-optimal action first 
and then assign actions to the other MDPs so as to respect the action constraints 
encoded in set A. This guarantees at least the value promised by that MDP because 
the payoffs are all non-negative. Because V*,i(Si) ~ Lt(Si) the result follows. 

Pruning of Actions: For any composite state, if the upper bound for any com­
posite action, a, is lower than the lower bound for some other composite action, 
then action a cannot be optimal - action a can then safely be discarded from the 
max in value iteration. Once discarded from the competitive set, an action never 
needs to be reconsidered. 

Our algorithm maintains the upper and lower bound status of U and L as it updates 
them. The result follows. 



1062 S. Singh and D. Cohn 

Convergence: Given enough time our algorithm converges to the optimal policy 
and optimal value function for the set of composite states reachable from the start 
state under the optimal policy. 

If every state were updated infinitely often, value iteration converges to the optimal 
solution for the composite problem independent of the intial guess Vo. The difference 
between standard value iteration and our algorithm is that we discard actions and 
do not update states not on the path from the start state under the continually 
pruned competitive actions. The actions we discard in a state are guaranteed not 
to be optimal and therefore cannot have any effect on the value of that state. Also 
states that are reachable only under discarded actions are automatically irrelevant 
to performing optimally from the start state. 

3 An Example: Avoiding Predators and Eating Food 

We illustrate the use of the merging algorithm on a simple avoid-predator-and­
eat-food problem, depicted in Figure 1a. The component MDPs are the avoid­
predator task and eat-food task; the composite MDP must solve these problems 
simultaneously. In isolation, the tasks avoid-predator and eat-food are fairly easy 
to learn. The state space of each task is of size n\ 625 states in the case illustrated. 
Using value iteration, the optimal solutions to both component tasks can be learned 
in approximately 1000 backups. Directly solving the composite problem requires 
n6 states (15625 in our case), and requires roughly 1 million backups to converge. 

Figure 1b compares the performance of several solutions to the avoid-predator­
and-eat-food task. The opt-predator and opt-food curves shows the performance 
of value iteration on the two component tasks in isolation; both converge qUickly 
to their optima. While it requires no further backups, the greedy algorithm of 
Section 1.4.1 falls short of optimal performance. Our merging algorithm, when 
initialized with solutions for the component tasks (5000 backups each) converges 
quickly to the optimal solution. Value iteration directly on the composite state space 
also finds the optimal solutions, but requires 4-5 times as many backups. Note that 
value iteration in composite state space also updated states on trajectories (as in 
Barto etal.'s, 1995 RTDP algorithm) through the state space just as in our merging 
algorithm, only without the benefit of the value function bounds and the pruning 
of non-competitive actions. 

4 Conclusion 

The ability to perform multiple decision-making tasks simultaneously, and even 
to incorporate new tasks dynamically into ongoing previous tasks, is of obvious 
interest to both cognitive science and engineering. Using the framework of MDPs 
for individual decision-making tasks, we have reformulated the above problem as 
that of dynamically merging MDPs. We have presented a modified value iteration 
algorithm for dynamically merging MDPs, proved its convergence, and illustrated 
its use on a simple merging task. 

As future work we intend to apply our merging algorithm to a real-world job­
shop scheduling problem, extend the algorithm into the framework of semi-Markov 
decision processes, and explore the performance of the algorithm in the case where 
a model of the MDPs is not available. 
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Figure 1: a) Our agent (A) roams an n by n grid. It gets a payoff of 0.5 for every time 
step it avoids predator (P), and earns a payoff of 1.0 for every piece of food (f) it finds. 
The agent moves two steps for every step P makes, and P always moves directly toward 
A. When food is found, it reappears at a random location on the next time step. On every 
time step, A has a 10% chance of ignoring its policy and making a random move. b) The 
mean payoff of different learning strategies vs. number of backups. The bottom two lines 
show that when trained on either task in isolation, a learner reaches the optimal payoff for 
that task in fewer than 5000 backups. The greedy approach makes no further backups, but 
performs well below optimal. The optimal composite solution, trained ab initio, requires 
requires nearly 1 million backups. Our algorithm begins with the 5000-backup solutions 
for the individual tasks, and converges to the optimum 4-5 times more quickly than the 
ab initio solution. 
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