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Abstract 

A new algorithm is presented which approximates the perceived 
visual similarity between images. The images are initially trans­
formed into a feature space which captures visual structure, tex­
ture and color using a tree of filters. Similarity is the inverse of 
the distance in this perceptual feature space. Using this algorithm 
we have constructed an image database system which can perform 
example based retrieval on large image databases. Using carefully 
constructed target sets, which limit variation to only a single visual 
characteristic, retrieval rates are quantitatively compared to those 
of standard methods. 

1 Introduction 

Without supplementary information, there exists no way to directly measure the 
similarity between the content of images. In general, one cannot answer a question of 
the form: "is image A more like image B or image C?" without defining the criteria 
by which this comparison is to be made. People perform such tasks by inferring 
some criterion, based on their visual experience or by complex reasoning about the 
situations depicted in the images. Humans are very capable database searchers. 
They can perform simple searches like, "find me images of cars", or more complex 
or loosely defined searches like, "find me images that depict pride in America". 
In either case one must examine all, or a large portion, of the database. As the 
prevalence and size of multimedia databases increases, automated techniques will 
become critical in the successful retrieval of relevant information. Such techniques 
must be able to measure the similarity between the visual content of natural images. 
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Many algorithms have been proposed for image database retrieval. For the most 
part these techniques compute a feature vector from an image which is made up of 
a handful of image measurements. Visual or semantic distance is then equated with 
feature distance. Examples include color histograms, texture histograms, shape 
boundary descriptors, eigenimages, and hybrid schemes (QBIC, ; Niblack et aI., 
1993; Virage, ; Kelly, Cannon and Hush, 1995; Pentland, Picard and ScIaroff, 1995; 
Picard and Kabir, 1993; Santini and Jain, 1996). A query to such a system typically 
consists of specifying two types of parameters: the target values of each of the 
measurements; and a set of weights, which determine the relative importance of 
deviations from the target in each measurement dimension. The features used by 
these systems each capture some very general property of images. As a result of 
their lack of specificity however, many images which are actually very different in 
content generate the same feature responses. 

In contrast our approach extracts thousands of very specific features. These features 
measure both local texture and global structure. The feature extraction algorithm 
computes color, edge orientation, and other local properties at many resolutions. 
This sort of multi-scale feature analysis is of critical importance in visual recogni­
tion and has been used successfully in the context of object recognition (von der 
Malsburg, 1988; Rao and Ballard, 1995; Viola, 1996) 

Our system differs from others because it detects not only first order relationships, 
such as edges or color, but also measures how these first order relationships are 
related to one another. Thus by finding patterns between image regions with par­
ticular local properties, more complex - and therefore more discriminating - fea­
tures can be extracted. This type of repeated, non-linear, feature detection bears 
a strong resemblance to the response properties of visual cortex cells (Desimone 
et al., 1984). While the mechanism for the responses of these cells is not yet clear, 
this work supports the conclusion that this type of representation is very useful in 
practical visual processing. 

2 Computing the Characteristic Signature 

The "texture-of-texture" measurements are based on the outputs of a tree of non­
linear filtering operations. Each path through the tree creates a particular filter 
network, which responds to certain structural organization in the image. Measur­
ing the appropriately weighted difference between the signatures of images in the 
database and the set of query-images, produces a similarity measure which can be 
used to rank and sort the images in the database. 

The computation of the characteristic signature is straightforward. At the highest 
level of resolution the image is convolved with a set of 25 local linear features 
including oriented edges and bars. The results of these convolutions are 25 feature 
response images. These images are then rectified by squaring, which extracts the 
texture energy in the image, and then downsampled by a factor of two. At this 
point there are 25 half scale output images which each measure a local textural 
property of the input image. For example one image is sensitive to vertical edges, 
and responds strongly to both skyscrapers and picket fences. 

Convolution, rectification and downsampling is then repeated on each of these 25 
half resolution images producing 625 quarter scale "texture-of-texture" images. The 
second layer will respond strongly to regions where the texture specified in the first 
layer has a particular spatial arrangement. For example if horizontal alignments 
of vertical texture are detected, there will be a strong response to a picket fence 
and little response to a skyscraper. With additional layers additional specificity is 
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achieved; repeating this procedure a third time yields 15,625 meta-texture images 
at eighth scale. 

Each of the resulting meta-textures is then summed to compute a single value and 
provides one element in the characteristic signature. When three channels of color 
are included there are a total of 46,875 elements in the characteristic signature. Once 
computed, the signature elements are normalized to reduce the effects of contrast 
changes. 

More formally the characteristic signature of an image is given by: 

Si,j,k,e(I) = L Ei,j,k(Ie) (1) 
pixels 

where I is the image, i, j and k index over the different types of linear filters, and 
Ie are the different color channels of the image. The definition of E is: 

Ei(I) 2 .j.. [(Fi 0 1)2] (2) 

Ei,j (I) 2.j.. [(Fj 0 Ei(I))2] (3) 

Ei,j,k(I) 2.j.. [(Fk 0 Ei,j(I))2] . (4) 

where F j is the ith filter and 2.j.. is the downsampling operation. 

3 U sing Characteristic Signatures To Form Image Queries 

In the "query by image" paradigm, we describe similarity in terms of the difference 
between an image and a group of example query images. This is done by compar­
ing the characteristic signature of the image to the mean signature of the query 
images. The relative importance of each element of the characteristic signature in 
determining similarity is proportional to the inverse variance of that element across 
the example-image group: 

L = - L L L L [S;,j,k,O( Iq) - S;,j,k,o (I.".) r 
i j k e Var[Si,j,k,e(lq )] 

(5) 

where Si,j,k,e(Iq ) and Var [Si,j,k,c(Iq )] are the mean and variance of the characteris­
tic signatures computed over the query set. This is a diagonal approximation of the 
Mahalanobis distance (Duda and Hart, 1973). It has the effect of normalizing the 
vector-space defined by the characteristic signatures, so that characteristic elements 
which are salient within the group of query images contribute more to the overall 
similarity of an image. 

In Figure 1 three 2D projections of these 46,875 dimensional characteristic signature 
space are shown. The data points marked with circles are generated by the 10 images 
shown at the top of Figure 3. The remaining points are generated by 2900 distract or 
images. Comparing (a) and (b) we see that in some projections the images cluster 
tightly, while in others they are distributed. Given a sample of images from the 
target set we can observe the variation in each possible projection axis. Most of the 
time the axes shown in (a) will be strongly discounted by the algorithm because 
these features are not consistent across the query set. Similarly the axes from (b) 
will receive a large weight because the target images have very consistent values. 

The axes along which target groups cluster, however, differ from target group to 
target group. As a result it is not possible to conclude that the axes in (b) are 
simply better than the axes in (a). In Figure 1 (c) the same projection is shown 
again this time with a different target set highlighted (with asterisks). 
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Figure 1: In some projections target groups do not cluster (a), and they do in 
others (b). However, different target groups will not necessarily cluster in the same 
projections (c). 

4 Experiments 

In the first set of experiments we use a database of 2900 images from 29 Corel Photo 
CD (collections 1000-2900.) Figure 2 shows the results of typical user query on this 
system. The top windows in each Figure contain the query-images submitted by 
the user. The bottom windows show the thirty images found to be most similar; 
similarity decreases from upper left (most similar) to lower right. 

Though these examples provide an anecdotal indication that the system is generat­
ing similarity measures which roughly conform to human perception, it is difficult 
to fully characterize the performance of this image retrieval technique. This is a 
fundamental problem of the domain. Images vary from each other in an astronom­
ical number of ways, and similarity is perceived by human observers based upon 
complex interactions between recognition, cognition, and assumption. It seems un­
likely that an absolute criterion for image similarity can ever be determined, if one 
truly exists. However using sets of images which we believe are visually similar, we 
can establish a basis for comparing algorithms. 

To better measure the performance of the system we added a set of 10 images to the 
2900 image database and attempted to retrieve these new images. We compare the 
performance of the present system to ten other techniques. Though these techniques 
are not as sophisticated as those used in systems developed by other researchers, 
they are indicative of the types of methods which are prevalent in the literature. 

In each experiment we measure the retrieval rates for a set of ten target images 
which we believe to be visually similar because they consist of images of a single 
scene. Images in the target set differ due to variation of a single visual characteristic. 
In some of the target sets the photographic conditions have been changed, either by 
moving the camera, the objects or the light . In other target sets post photograph 
image manipulation has been performed. Two example target sets are shown in 
Figure 3. 

In each experiment we perform 45 database queries using every possible pair of 
images from the target set. The retrieval methods compared are: ToT The current 
textures-of-textures system; RGB-216(or 512)C R,G,B color histograms using 
216 (or 512) bins by dividing each color dimension into 6 (or 8) regions. The 
target histogram is generated by combining the histograms from the two model im­
ages; HSV-216(or 512)C same using H,S,V color space; RGB(or HSV)-216(or 
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Figure 2: Sample queries and top 30 responses. 
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Figure 3: Two target sets used in the retrieval experiments. Top: Variation of 
object location. BOTTOM: Variation of hard shadows. 
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Figure 4: The percentage of target images ranked above all the distract or images, 
shown for 15 target sets such as those in Figure 3. The textures-of-textures model 
presented here achieves perfect performance in 13 of the 15 experiments. 

512)NN histograms in which similarity is measured using a nearest neighbor met­
ric; COR-full(and low)res full resolution (and 4x downsampled) image correla­
tion. 
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Rankings for all 10 target images in each of the 45 queries are obtained for each 
variation. To get a comparative sense of the overall performance of each technique, 
we show the number of target images retrieved with a Neyman-Pearson criterion 
of zero, i.e. no false positives Figure 4. The textures-of-textures model substan­
tially outperforms all of the other techniques, achieving perfect performance in 13 
experiments. 

5 Discussion 

We have presented a technique for approximating perceived visual similar­
ity, by measuring the structural content similarity between images. Using 
the high dimensional "characteristic signature" space representation, we di­
rectly compare database-images to a set of query-images. A world wide 
web interface to system has been created and is available via the URL: 

http://www.ai.mit.edu/~jsd/Research/lmageDatabase/Demo 

Experiments indicate that the present system can retrieve images which share vi­
sual characteristics with the query-images, from a large non-homogeneous database. 
Further, it greatly outperforms many of the standard methods which form the basis 
of other systems. 

Though the results presented here are encouraging, on real world queries, the re­
trieved images often contain many false alarms, such as those in Figure 2; however, 
we believe that with additional analysis performance can be improved. 
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