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Abstract 

The observed distribution of natural images is far from uniform. 
On the contrary, real images have complex and important struc­
ture that can be exploited for image processing, recognition and 
analysis. There have been many proposed approaches to the prin­
cipled statistical modeling of images, but each has been limited in 
either the complexity of the models or the complexity of the im­
ages. We present a non-parametric multi-scale statistical model for 
images that can be used for recognition, image de-noising, and in 
a "generative mode" to synthesize high quality textures. 

1 Introduction 

In this paper we describe a multi-scale statistical model which can capture the 
structure of natural images across many scales. Once trained on example images, 
it can be used to recognize novel images, or to generate new images. Each of these 
tasks is reasonably efficient, requiring no more than a few seconds or minutes on a 
workstation. 

The statistical modeling of images is an endeavor which reaches back to the 60's 
and 70's (Duda and Hart, 1973). Statistical approaches are alluring because they 
provide a unified view of learning, classification and generation. To date however, a 
generic, efficient and unified statistical model for natural images has yet to appear. 
Nevertheless, many approaches have shown significant competence in specific areas. 

Perhaps the most influential statistical model for generic images is the Markov 
random field (MRF) (Geman and Geman, 1984). MRF's define a distribution over 
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images that is based on simple and local interactions between pixels. Though MRF's 
have been very successfully used for restoration of images, their generative prop­
erties are weak. This is due to the inability of the MRF 's to capture long range 
(low frequency) interactions between pixels. Recently there has been a great deal of 
interest in hierarchical models such as the Helmholtz machine (Hinton et al., 1995; 
Dayan et al. , 1995). Though the Helmholtz machine can be trained to discover long 
range structure, it is not easily applied to natural images. 

Multi-scale wavelet models have emerged as an effective technique for modeling 
realistic natural images. These techniques hypothesize that the wavelet transform 
measures the underlying causes of natural images which are assumed to be statisti­
cally independent. The primary evidence for this conjecture is that the coefficients of 
wavelet transformed images are uncorrelated and low in entropy (hence the success 
of wavelet compression) . These insights have been used for noise reduction (Donoho 
and Johnstone, 1993; Simoncelli and Adelson, 1996), and example driven texture 
synthesis (Heeger and Bergen, 1995). The main drawback of wavelet algorithms is 
the assumption of complete independence between coefficients. We conjecture that 
in fact there is strong cross-scale dependence between the wavelet coefficients of an 
image, which is consistent with observations in (De Bonet, 1997) and (Buccigrossi 
and Simoncelli , 1997). 

2 Multi-scale Statistical Models 

Multi-scale wavelet techniques assume that images are a linear transform of a collec­
tion of statistically independent random variables: 1= W-1C, where I is an image, 
W- 1 is the inverse wavelet transform, and C = {Ck} is a vector of random variable 
"causes" which are assumed to be independent. The distribution of each cause Ck is 
Pk ( . ), and since the Ck'S are independent it follows that: p( C) = nk Pk (Ck). Various 
wavelet transforms have been developed, but all share the same type of multi-scale 
structure - each row of the wavelet matrix W is a spatially localized filter that is 
a shifted and scaled version of a single basis function. 

The wavelet transform is most efficiently computed as an iterative convolution using 
a bank of filters . First a "pyramid" of low frequency downsampled images is created: 
Go = I , G1 = 2 ..!-(9 ® Go), and Gi+l = 2 ..!-(9 ® Gi ), where 2..!- downsamples an 
image by a factor of 2 in each dimension, ® is the convolution operation, and 9 is 
a low pass filter. At each level a series offilter functions are applied: Fj = h (j!) Gj, 
where the Ii 's are various types of filters. Computation of the Fj's is a linear 
transformation that can thought of as a single matrix W. With careful selection 
of 9 and h this matrix can be constructed so that W- 1 = W T (Simoncelli et al., 
1992)1. Where convenient we will combine the pixels of the feature images Fj(x, y) 

into a single cause vector C. 
The expected distribution of causes, Ck, is a function of the image classes that are 
being modeled. For example it is possible to attempt to model the space of all 
natural images. In that case it appears as though the most accurate Pk (.) 's are 
highly kurtotic which indicates that the Ck ' S are most often zero but in rare cases 
take on very large values (Donoho and Johnstone, 1993; Simoncelli and Adelson, 
1996) . This is in direct contrast to the distribution of Ck'S for white-noise images -
which is gaussian. The difference in these distributions can be used as the basis 
of noise reduction algorithms, by reducing the wavelet coefficients which are more 

lComputation of the inverse wavelet transform is algorithmically similar to the com­
putation of the forward wavelet transform. 
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likely to be noise than signal. 

Specific image classes can be modeled using similar methods (Heeger and Bergen, 
1995)2. For a given set of input images the empirical distribution of the Ck'S is 
observed. To generate a novel example of a texture a new set of causes, (}, is sampled 
from the assumed independent empirical distributions Pk (.). The generated images 
are computed using the inverse wavelet transform: l' = W- 1(},. Bergen and Heeger 
have used this approach to build a probabilistic model of a texture from a ::;ingle 
example image. To do this they assume that textures are spatially ergodic - that 
the expected distribution is not a function of position in the image. As a result the 
pixels in anyone feature image, Fj(x, y), are samples from the same distribution 
and can be combined3 . 

Heeger and Bergen's work is at or near the current state of the art in texture 
generation. Figure 1 contains some example textures. Notice however, that this 
technique is much better at generating smooth or noise-like textures than those 
with well defined structure. Image structures, such as the sharp edges at the border 
of the tiles in the rightmost texture can not be modeled with their approach. These 
image features directly contradict the assumption that the wavelet coefficients, or 
causes, of the image are independent. 

For many types of natural images the coefficients of the wavelet transform are not 
independent, for example images which contain long edges. While wavelets are local 
both in frequency and space, a long edge is not local in frequency nor in space. As 
a result the wavelet representation of such a feature requires many coefficients. The 
high frequencies of the edge are captured by many small high frequency wavelets. 
The long scale is captured by a number of larger low frequency wavelets. A model 
which assumes these coefficients are independent can never accurately model images 
which contain these non-local features. Conversely a model which captures the 
conditional dependencies between coefficients will be much more effective. We chose 
to approximate the joint distribution of coefficients as a chain, in which coefficients 
that occur higher in the wavelet pyramid condition the distribution of coefficients 
at lower levels (Le. low frequencies condition the generation of higher frequencies). 

For every pixel in an image define the parent vector of that pixel: 

.... [ 0 1 N V (x, y) = Fo (x, y), Fo (x, y), . .. ,Fo (x, y), 

-nO X y 1 X y) N X YJ) l'{(l2"J, l2"J),F1 (L2"J, L2"J , ... ,Fl (l2"J, L2" , ... 

o x Y 1 X J Y) N L x J L Y J)] FM(L2MJ,l2MJ),FM(l2M ,L 2M J , ... ,FM ( 2M ' 2M (1) 

where M is the top level of the pyramid and N is the number of features. Rather 
than generating each of these coefficients independently, we define a chain across 
scale. In this chain the generation of the lower levels depend on the higher levels: 

p(V(x, y)) = p(VM(x, y)) x p(VM- 1 (x, y)IVM(x, y)) 

x p(VM-2(X, y)!VM-l (x, y), VM(x, y)) x ... 

x p(Vo(x, y)IVl (x, y), ... , VM-l (x, y), VM(x, y)) (2) 

2See (Zhu, Wu and Mumford, 1996) for a related but more formal model. 
3Their generation process is slightly more complex than this, involving a iteration 

designed to match the pixel histogram. The implementation used for generating the images 
in Figure 1 incorporates this, but we do not discuss it here. 
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Figure 1: Synthesis results for the Heeger and Bergen (1995) model. Top: Input 
textures. BOTTOM: Synthesis results. This technique is much better at generating 
fine or noisy textures then it is at generating textures which require co-occurrence 
of wavelets at multiple scales. 

Figure 2: Synthesis results using our technique for the input textures shown in 
Figure 1 (Top). 

where Yt(x , y) is the a subset of the elements of Vex, y) computed from C/. Usually 
we will assume ergodicity, i.e. that p(V(x, y)) is independent of x and y. The gen­
erative process starts from the top of the pyramid, choosing values for the V M (x, y) 
at all points. Once these are generated the values at the next level, V M -1 (x , y) , are 
generated. The process continues until all of the wavelet coefficients are generated. 
Finally the image is computed using the inverse wavelet transform. 

It is important to note that this probabilistic model is not made up of a collection 
of independent chains, one for each Vex, y). Parent vectors for neighboring pixels 
have substantial overlap as coefficients in the higher pyramid levels (which are 
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lower resolution) are shared by neighboring pixels at lower pyramid levels. Thus, 
the generation of nearby pixels will be strongly dependent. In a related approach a 
similar arrangement of generative chains has been termed a Markov tree (Basseville 
et al., 1992). 

2.1 Estimating the Conditional Distributions 

The additional descriptive power of our generative model does not come without 
cost. The conditional distributions that appear in (2) must be estimated from 
observations. We choose to do this directly from the data in a non-parametric 

fashion. Given a sample of parent vectors {8(x, y)} from an example image we 

estimate the conditional distribution as a ratio of Parzen window density estimators: 

(~( )1v,M ( )) _ p(ViM(x,y)) '" Lx',y' R(V;M(X,y), 8r(x', y')) 
p I x,y /+1 x,y - .... M '" "'M .... M 

p(V/+1(x,y)) Lx',y' R(V/+l (x, y), S/+1 (x',y')) (3) 

where Vik(x,y) is a subset of the parent vector V(x,y) that contains information 
from level I to level k, and R(·) is a function of two vectors that returns maximal 
values when the vectors are similar and smaller values when the vectors are dis­
similar. We have explored various R(·) functions. In the results presented the 
R( .) function returns a fixed constant 1/ z if all of the coefficients of the vec­
tors are within some threshold () and zero otherwise. Given this simple defini-
tion for R(·) sampling from p(Vz(x,Y)IV;~1(X,y)) is very straightforward: find all 

x', y' such that R(8#1 (x', y'), 8#1 (x, y)) = 1/ z and pick from among them to set 

Vz(x,y) = SI(X',y'). 

3 Experiments 

We have applied this approach to the problems of texture generation, texture recog­
nition, target recognition, and signal de-noising. In each case our results are com­
petitive with the best published approaches. 

In Figure 2 we show the results of our technique on the textures from Figure 1. 
For these textures we are better able to model features which are caused by a 
conjunction of wavelets. This is especially striking in the rightmost texture where 
the geometrical tiling is almost, but not quite, preserved. In our model, knowledge of 
the joint distribution provides constraints which are critical in the overall perceived 
appearance of the synthesized texture. 

Using this same model, we can measure the textural similarity between a known and 
novel image. We do this by measuring the likelihood of generating the parent vectors 
in the novel image under the chain model of the known image. On "easy" data 
sets, such as the the MeasTex Brodatz texture test suite, performance is slightly 
higher than other techniques, our approach achieved 100% correct classification 
compared to 97% achieved by a gaussian MRF approach (Chellappa and Chatterjee, 
1985). The MeasTex lattice test suite is slightly more difficult because each 
texture is actually a composition of textures containing different spatial frequencies. 
Our approach achieved 97% while the best alternate method, in this case Gabor 
Convolution Energy method (Fogel and Sagi, 1989) achieved 89%. Gaussian MRF's 
explicitly assume that the texture is a unimodal distribution and as a result achieve 
only 79% correct recognition. We also measured performance on a set of 20 types 
of natural texture and compared the classification power of this model to that of 
human observers (humans discriminate textures extremely accurately.) On this 
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Original Denoise Shrinkage Shrinkage Residual 

Noised Denoise Ours Our Residual 

Figure 3: (Original) the original image; (Noised) the image corrupted with white 
gaussian noise (SNR 8.9 dB); (Denoise Shrinkage) the results of de-noising using 
wavelet shrinkage or coring (Donoho and Johnstone, 1993; Simoncelli and Adelson, 
1996) (SNR 9.8 dB); (Shrinkage Residual) the residual error between the shrinkage 
de-noised result and the original - notice that the error contains a great deal of 
interpretable structure; (Denoise Ours) our de-noising approach (SNR 13.2 dB); 
and (Our Residual) the residual error - these errors are much less structured. 

test, humans achieved 86% accuracy, our approach achieved an accuracy of 81%, 
and GMRF's achieved 68%. 

A strong probabilistic model for images can be used to perform a variety of image 
processing tasks including de-noising and sharpening. De-noising of an observed 
image i can be performed by Monte Carlo averaging: draw a number of sample 
images according to the prior density P(I), compute the likelihood of the noise for 
each image P(v = (1) - 1), and then find the weighted average over these images. 
The weighted average is the estimated mean over all possible ways that the image 
might have been generated given the observation. 

Image de-noising frequently relies on generic image models which simply enforce 
image smoothness. These priors either leave a lot of residual noise or remove much 
of the original image. In contrast, we construct a probability density model from 
the noisy image itself. In effect we assume that the image is redundant, containing 
many examples of the same visual structures, as if it were a texture. The value of 
this approach is directly related to the redundancy in the image. If the redundancy 
in the image is very low, then the parent structures will be everywhere different, and 
the only resampled images with significant likelihood will be the original image. But 
if there is some redundancy in the image - that might arise from a regular texture 
or smoothly varying patch - the resampling will freely average across these similar 
regions. This will have the effect of reducing noise in these images. In Figure 3 we 
show results of this de-noising approach. 
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4 Conclusions 

We have presented a statistical model of texture which can be trained using exam­
ple images. The form of the model is a conditional chain across scale on a pyra­
mid of wavelet coefficients. The cross scale condtional distributions are estimated 
non-parametrically. This is important because many of the observed conditional 
distributions are complex and contain multiple modes. We believe that there are 
two main weaknesses of the current approach: i) the tree on which the distributions 
are defined are fixed and non-overlapping; and ii) the conditional distributions are 
estimated from a small number of samples. We hope to address these limitations 
in future work. 
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