
An Improved Policy Iteratioll Algorithm 
for Partially Observable MDPs 

Eric A. Hansen 
Computer Science Department 

University of Massachusetts 
Amherst, MA 01003 
hansen@cs.umass.edu 

Abstract 

A new policy iteration algorithm for partially observable Markov 
decision processes is presented that is simpler and more efficient than 
an earlier policy iteration algorithm of Sondik (1971,1978). The key 
simplification is representation of a policy as a finite-state controller. 
This representation makes policy evaluation straightforward. The pa­
per's contribution is to show that the dynamic-programming update 
used in the policy improvement step can be interpreted as the trans­
formation of a finite-state controller into an improved finite-state con­
troller. The new algorithm consistently outperforms value iteration 
as an approach to solving infinite-horizon problems. 

1 Introduction 

A partially observable Markov decision process (POMDP) is a generalization of the 
standard completely observable Markov decision process that allows imperfect infor­
mation about the state of the system. First studied as a model of decision-making in 
operations research, it has recently been used as a framework for decision-theoretic 
planning and reinforcement learning with hidden state (Monahan, 1982; Cassandra, 
Kaelbling, & Littman, 1994; Jaakkola, Singh, & Jordan, 1995). 

Value iteration and policy iteration algorithms for POMDPs were first developed by 
Sondik and rely on a piecewise linear and convex representation of the value function 
(Sondik, 1971; Smallwood & Sondik,1973; Sondik, 1978). Sondik's policy iteration 
algorithm has proved to be impractical, however, because its policy evaluation step is 
extremely complicated and difficult to implement. As a result, almost all subsequent 
work on dynamic programming for POMDPs has used value iteration. In this paper, 
we describe an improved policy iteration algorithm for POMDPs that avoids the dif­
ficulties of Sondik's algorithm. We show that these difficulties hinge on the choice of 
a policy representation and can be avoided by representing a policy as a finite-state 



1016 E. A. Hansen 

controller. This representation makes the policy evaluation step easy to implement 
and efficient. We show that the policy improvement step can be interpreted in a nat­
ural way as the transformation of a finite-state controller into an improved finite-state 
controller. Although it is not always possible to represent an optimal policy for an 
infinite-horizon POMDP as a finite-state controller, it is always possible to do so when 
the optimal value function is piecewise linear and convex. Therefore representation of 
a poiicy as a finite-state controller is no more limiting than representation of the value 
function as piecewise linear and convex. In fact, it is the close relationship between 
representation of a policy as a finite-state controller and representation of a value 
function as piecewise linear and convex that the new algorithm successfully exploits. 

The paper is organized as follows. Section 2 briefly reviews the POMDP model and 
Sondik's policy iteration algorithm. Section 3 describes an improved policy iteration 
algorithm. Section 4 illustrates the algorithm with a simple example and reports a 
comparison of its performance to value iteration. The paper concludes with a discus­
sion of the significance of this work. 

2 Background 

Consider a discrete-time POMDP with a finite set of states 5, a finite set of actions 
A, and a finite set of observations e. Each time period, the system is in some state 
i E 5, an agent chooses an action a E A for which it receives a reward with expected 
value ri, the system makes a transition to state j E 5 with probability pij' and the 
agent observes () E e with probability tje. We assume the performance objective is 
to maximize expected total discounted reward over an infinite horizon. 

Although the state of the system cannot be directly observed, the probability that it is 
in a given state can be calculated. Let 7r denote a vector of state probabilities, called 
an information state, where 7ri denotes the probability that the system is in state i. If 
action a is taken in information state 7r and () is observed, the successor information 
state is determined by revising each state probability using Bayes' theorem: trj = 
LiEs 7riPijQje/ Li,jES 7riPijQje' Geometrically, each information state 7r is a point in 
the (151 - I)-dimensional unit simplex, denoted II. 

It is well-known that an information state 7r is a sufficient statistic that summarizes 
all information about the history of a POMDP necessary for optimal action selection. 
Therefore a POMDP can be recast as a completely observable MDP with a continuous 
state space II and it can be theoretically solved using dynamic programming. The key 
to practical implementation of a dynamic-programming algorithm is a piecewise-linear 
and convex representation of the value function. Smallwood and Sondik (1973) show 
that the dynamic-programming update for POMDPs preserves the piecewise linearity 
and convexity of the value function. They also show that an optimal value function fot 
a finite-horizon POMDP is always piecewise linear and convex. For infinite-horizon 
POMDPs, Sondik (1978) shows that an optimal value function is sometimes piecewise 
linear and convex and can be aproximated arbitrarily closely by a piecewise linear and 
convex function otherwise. 

A piecewise linear and convex value function V can be represented by a finite set 
of lSI-dimensional vectors, r = {aO,a i , •.. }, such that V(7r) = maxkLi s7riaf. A 
dynamic-programming update transforms a value function V representedEfiy a set r 
of a-vectors into an improved value function V' represented by a set r' of a-vectors. 
Each possible a-vector in r' corresponds to choice of an action, and for each possible 
observation, choice of a successor vector in r. Given the combinatorial number of 
choices that can be made, the maximum n4mber of vectors in r' is IAllfll91. However 
most of these potential vectors are not needed to define the updated value function 
and can be pruned. Thus the dynamic-programming update problem is to find a 



An Improved Policy Iteration Algorithmfor Partially Observable MDPs J017 

minimal set of vectors r' that represents V', given a set of vectors r that represents 
V . Several algorithms for performing this dynamic-programming update have been 
developed but describing them is beyond the scope of this paper. Any algorithm for 
performing the dynamic-programming update can be used in the policy improvement 
step of policy iteration. The algorithm that is presently the fastest is described by 
(Cassandra, Littman, & Zhang, 1997). 

For value iteration, it is sufficient to have a representation of the value function because 
a policy is defined implicitly by the value function, as follows, 

8(11") = a(arg mF L 1I"i o f), (1) 
iES 

where a(k) denotes the action associated with vector ok. But for policy iteration, 
a policy must be represented independently of the value function because the policy 
evaluation step computes the value function of a given policy. Sondik's choice of 
a policy representation is influenced by Blackwell's proof that for a continuous-space 
infinite-horizon MDP, there is a stationary, deterministic Markov policy that is optimal 
(Blackwell, 1965). Based on this result, Sondik restricts policy space to stationary and 
deterministic Markov policies that map the continuum of information space II into 
action space A. Because it is important for a policy to have a finite representation, 
Sondik defines an admissible policy as a mapping from a finite number of polyhedral 
regions of II to A . Each region is represented by a set of linear inequalities, where 
each linear inequality corresponds to a boundary of the region. 

This is Sondik's canonical representation of a policy, but his policy iteration algorithm 
makes use of two other representations. In the policy evaluation step, he converts a 
policy from this representation to an equivalent, or approximately equivalent, finite­
state controller. Although no method is known for computing the value function of 
a policy represented as a mapping from II to A, the value function of a finite-state 
controller can be computed in a straightforward way. In the policy improvement 
step, Sondik converts a policy represented implicitly by the updated value function 
and equation (1) back to his canonical representation. The complexity of translating 
between these different policy representations - especially in the policy evaluation step 
- makes Sondik's policy iteration algorithm difficult to implement and explains why 
it is not used in practice. 

3 Algorithm 

We now show that policy iteration for POMDPs can be simplified - both conceptually 
and computationally - by using a single representation of a policy as a finite-state 
controller. 

3.1 Policy evaluation 

As Sondik recognized, policy evaluation is straightforward when a policy is represented 
as a finite-state controller. An o-vector representation of the value function of a finite­
state controller is computed by solving the system of linear equations, 

k _ a(k) + (3'"' a(k) a(k) s(k ,8) 
0i - ri L.JPij qj8 OJ , (2) 

j ,8 

where k is an index of a state of the finite-state controller, a(k) is the action associated 
with machine state k, and s(k,O) is the index of the successor machine state if 0 is 
observed. This value function is convex as well as piecewise linear because the expected 
value of an information state is determined by assuming the controller is started in 
the machine state that optimizes it. 



1018 E. A. Hansen 

1. Specify an initial finite-state controller, <5, and select f. for detecting conver­
gence to an f.-optimal policy. 

2. Policy evaluation: Calculate a set r of a-vectors that represents the value 
function for <5 by solving the system of equations given by equation 2. 

3. Policy improvement: Perform a dynamic-programming update and use the 
new set of vectors r' to transform <5 into a new finite-state controller, <5', as 
follows: 

(a) For each vector a in r': 
l. If the action and successor links associated with a duplicate those of 

a machine state of <5, then keep that machine state unchanged in 8'. 
ii. Else if a pointwise dominates a vector associated with a machine state 

of <5, change the action and successor links of that machine state to 
those used to create a. (If it pointwise dominates the vectors of more 
than one machine state, they can be combined into a single machine 
state.) 

iii. Otherwise add a machine state to <5' that has the same action and 
successor links used to create a. 

(b) Prune any machine state for which there is no corresponding vector in 
r', as long as it is not reachable from a machine state to which a vector 
in r' does correspond. 

4. Termination test. If the Bellman residual is less than or equal to f.(1 - /3)//3, 
exit with f.-optimal policy. Otherwise set <5 to <5' and go to step 2. 

Figure 1: Policy iteration algorithm. 

3.2 Policy improvement 

The policy improvement step uses the dynamic-programming update to transform a 
value function V represented by a set r of a-vectors into an improved value function 
V' represented by a set r' of a-vectors. We now show that the dynamic-programming 
update can also be interpreted as the transformation of a finite-state controller 8 into 
an improved finite-state controller <5'. The transformation is made based on a simple 
comparison of r' and r. 
First note that some of the a-vectors in r' are duplicates of a-vectors in r, that is, 
their action and successor links match (and their vector values are pointwise equal). 
Any machine state of <5 for which there is a duplicate vector in r' is left unchanged. 
The vectors in r' that are not duplicates of vectors in r indicate how to change the 
finite-state controller. If a non-duplicate vector in r' pointwise dominates a vector 
in r, the machine state that corresponds to the pointwise dominated vector in r is 
changed so that its action and successor links match those of the dominating vector 
in r'. If a non-duplicate vector in r' does not pointwise dominate a vector in r, a 
machine state is added to the finite-state controller with the same action and successor 
links used to generate the vector. There may be some machine states for which there 
is no corresponding vector in r' and they can be pruned, but only if they are not 
reachable from a machine state that corresponds to a vector in r'. This last point is 
important because it preserves the integrity of the finite-state controller. 

A policy iteration algorithm that uses these simple transformations to change a finite­
state controller in the policy improvement step is summarized in Figure 1. An algo­
rithm that performs this transformation is easy to implement and runs very efficiently 
because it simply compares the a-vectors in r' to the a-vectors in r and modifies the 
finite-state controller accordingly. The policy evaluation step is invoked to compute 
the value function of the transformed finite-state controller. (This is only necessary 



An Improved Policy Iteration Algorithmfor Partially Observable MDPs 1019 

if a machine state has been changed, not if machine states have simply been added.) 
It is easy to show that the value function of the transformed finite-state controller /j' 
dominates the value function of the original finite-state controller, /j, and we omit the 
proof which appears in (Hansen, 1998). 

Theorem 1 If a finite-state controller is not optimal, policy improvement transforms 
it into a finite-state controller with a value function that is as good or better for every 
information state and better for some information state. 

3.3 Convergence 

If a finite-state controller cannot be improved in the policy improvement step (Le., all 
the vectors in r' are duplicates of vectors in r), it must be optimal because the value 
function satisfies the optimality equation. However policy iteration does not neces­
sarily converge to an optimal finite-state controller after a finite number of iterations 
because there is not necessarily an optimal finite-state controller. Therefore we use 
the same stopping condition used by Sondik to detect t-optimality: a finite-state con­
troller is t-optimal when the Bellman residual is less than or equal to t(l- {3) / {3, where 
{3 denotes the discount factor. Representation of a policy as a finite-state controller 
makes the following proof straightforward (Hansen, 1998). 

Theorem 2 Policy iteration converges to an t-optimal finite-state controller after a 
finite number of iterations. 

4 Example and performance 

We illustrate the algorithm using the same example used by Sondik: a simple two­
state, two-action, two-observation POMDP that models the problem of finding an 
optimal marketing strategy given imperfect information about consumer preferences 
(Sondik,1971,1978). The two states of the problem represent consumer preference 
or lack of preference for the manufacturers brand; let B denote brand preference 
and ....,B denote lack of brand preference. Although consumer preferences cannot be 
observed, they can be infered based on observed purchasing behavior; let P denote 
purchase of the product and let ....,p denote no purchase. There are two marketing 
alternatives or actions; the company can market a luxury version of the product (L) 
or a standard version (S). The luxury version is more expensive to market but can 
bring greater profit. Marketing the luxury version also increases brand preference. 
However consumers are more likely to purchase the less expensive, standard product. 
The transition probabilities, observation probabilities, and reward function for this 
example are shown in Figure 2. The discount factor is 0.9. 

Both Sondik's policy iteration algorithm and the new policy iteration algorithm con­
verge in three iterations from a starting policy that is equivalent to the finite-state 

AClions Transilion Observalion Expecled 
probabililies probabililies reward 

B -B P -p 
Markel B/O.8/0.2\ B 10.81 0.2\ B§j luxury -B 0.5 0.5 -B 0.60.4 -B ·4 producl (L) 

B -B P -p 
Markel 

B~ B~ Bbj slandard 
producl (S) -B 0.4 o. -B O. 0. -B ·3 

Figure 2: Parameters for marketing example of Sondik (1971,1978) . 



1020 

(.) (b) (e) 

~; .. " -~ '''' .. 
" a = L \ 
~ 9,96 : 
'- 18.86 <,8=-P 

'~~9~~_:~~~;~<~._ 
:' .1 = S " \\ 
: 14.82! \ 
\ 18.20 / \ 
', __ __ - '~~ P \., 

''', ,.;,\ 

/""---... ,9=-p,y: 
" a.= S \ .. ,'" 
: 14.86 t ____ .... 
\_:8.1~/8=P 

(d) 

E A. Hansen 

(e) 

Figure 3: (a) shows the initial finite-state controller, (b) uses dashed circles to show the 
vectors in r' generated in the first policy improvement step and (c) shows the transformed 
finite-state controller, (d) uses dashed circles to show the vectors in r' generated in the second 
policy improvement step and (e) shows the transformed finite-state controller after policy 
evaluation. The optimality of this finite-state controller is detected on the third iteration, 
which is not shown. Arcs are labeled with one of two possible observations and machine 
states are labeled with one of two possible actions and a 2-dimensional vector that contains 
a value for each of the two possible system states. 

controller shown in Figure 3a. Figure 3 shows how the initial finite-state controller 
is transformed into an optimal finite-state controller by the new algorithm. In the 
first iteration, the updated set of vectors r' (indicated by dashed circles in Figure 3b) 
includes two duplicate vectors and one non-duplicate that results in an added machine 
state. Figure 3c shows the improved finite-state controller after the first iteration. In 
the second iteration, each of the three vectors in the updated set of vectors r' (indi­
cated by dashed circles in Figure 3d) pointwise dominates a vector that corresponds 
to a current machine state. Thus each of these machine states is changed. Figure 4e 
shows the improved finite-state controller after the second iteration. The optimality 
of this finite-state controller is detected in the third iteration. 

This is the only example for which Sondik reports using policy iteration to find an op­
timal policy. For POMDPs with more than two states, Sondik's algorithm is especially 
difficult to implement. Sondik reports that his algorithm finds a suboptimal policy 
for an example described in (Smallwood & Sondik, 1973). No further computational 
experience with his algorithm has been reported. 

The new policy iteration algorithm described in this paper easily finds an optimal 
finite-state controller for the example described in (Smallwood & Sondik, 1973) and 
has been used to solve many other POMDPs. In fact, it consistently outperforms value 
iteration. We compared its performance to the performance of value iteration on a 
suite of ten POMDPs that represent a range of problem sizes for which exact dynamic­
programming updates are currently feasible. (Presently, exact dynamic-prorgramming 
updates are not feasible for POMDPs with more than about ten or fifteen states, 
actions, or observations.) Starting from the same point, we measured how soon each 
algorithm converged to f-optimality for f values of 10.0, 1.0, 0.1 , and 0.01. Policy 
iteration was consistently faster than value iteration by a factor that ranged from a 
low of about 10 times faster to a high of over 120 times faster. On average, its rate 
of convergence was between 40 and 50 times faster than value iteration for this set 
of examples. The finite-state controllers it found had as many as several hundred 
machine states, although optimal finite-state controllers were sometimes found with 
just a few machine states. 



An Improved Policy Iteration Algorithm for Partially Observable MDPs 1021 

5 Discussion 

We have demonstrated that the dynamic-programming update for POMDPs can be 
interpreted as the improvement of a finite-state controller. This interpretation can 
be applied to both value iteration and policy iteration. It provides no computational 
speedup for value iteration, but for policy iteration it results in substantial speedup by 
making policy evaluation straightforward and easy to implement. This representation 
also has the advantage that it makes a policy easier to understand and execute than 
representation as a mapping from regions of information space to actions. In particu­
lar, a policy can be executed without maintaining an information state at run-time. 

It is well-known that policy iteration converges to f-optimality (or optimality) in 
fewer iterations than value iteration. For completely observable MDPs, this is not a 
clear advantage because the policy evaluation step is more computationally expensive 
than the dynamic-programming update. But for POMDPs, policy evaluation has low­
order polynomial complexity compared to the worst-case exponential complexity of 
the dynamic-programming update (Littman et al., 1995). Therefore, policy iteration 
appears to have a clearer advantage over value iteration for POMDPs. Preliminary 
testing bears this out and suggests that policy iteration significantly outperforms value 
iteration as an approach to solving infinite-horizon POMDPs. 

Acknowledgements 

Thanks to Shlomo Zilberstein and especially Michael Littman for helpful discussions. 
Support for this work was provided in part by the National Science Foundation under 
grants IRI-9409827 and IRI-9624992. 

References 

Blackwell, D. {1965} Discounted dynamic programming. Ann. Math. Stat. 36:226-
235. 

Cassandra, A.; Kaelbling, L.P.; Littman, M.L. {1994} Acting optimally in partially 
observable stochastic domains. In Proc. 13th National Conf. on AI, 1023-1028. 

Cassandra, A.; Littman, M.L.; & Zhang, N.L. (1997) Incremental pruning: A simple, 
fast, exact algorithm for partially observable Markov decision processes. In Proc. 13th 
A nnual Con/. on Uncertainty in AI. 

Hansen, E.A. (1998). Finite-Memory Control of Partially Observable Systems. PhD 
thesis, Department of Computer Science, University of Massachusetts at Amherst. 

Jaakkola, T.; Singh, S.P. ; & Jordan, M.I. (1995) Reinforcement learning algorithm for 
partially observable Markov decision problems. In NIPS-7. 

Littman, M.L.; Cassandra, A.R.; & Kaebling, L.P. (1995) Efficient dynamic­
programming updates in partially observable Markov decision processes. Computer 
Science Technical Report CS-95-19, Brown University. 

Monahan, G.E. (1982) A survey of partially observable Markov decision processes: 
Theory, models, and algorithms. Management Science 28:1-16. 

Smallwood, R.D. & Sondik, E.J. (1973) The optimal control of partially observable 
Markov processes over a finite horizon. Operations Research 21:1071-1088. 

Sondik, E.J. (1971) The Optimal Control of Partially Observable Markov Processes. 
PhD thesis, Department of Electrical Engineering, Stanford University. 

Sondik, E.J. (1978) The optimal control of partially observable Markov processes over 
the infinite horizon: Discounted costs. Operations Research 26:282-304. 


