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Converging evidence has shown that human object recognition 
depends on familiarity with the images of an object. Further, 
the greater the similarity between objects, the stronger is the 
dependence on object appearance, and the more important two­
dimensional (2D) image information becomes. These findings, how­
ever, do not rule out the use of 3D structural information in recog­
nition, and the degree to which 3D information is used in visual 
memory is an important issue. Liu, Knill, & Kersten (1995) showed 
that any model that is restricted to rotations in the image plane 
of independent 2D templates could not account for human perfor­
mance in discriminating novel object views. We now present results 
from models of generalized radial basis functions (GRBF), 2D near­
est neighbor matching that allows 2D affine transformations, and 
a Bayesian statistical estimator that integrates over all possible 2D 
affine transformations. The performance of the human observers 
relative to each of the models is better for the novel views than 
for the familiar template views, suggesting that humans generalize 
better to novel views from template views. The Bayesian estima­
tor yields the optimal performance with 2D affine transformations 
and independent 2D templates. Therefore, models of 2D affine 
matching operations with independent 2D templates are unlikely 
to account for human recognition performance. 

1 Introduction 

Object recognition is one of the most important functions in human vision. To 
understand human object recognition, it is essential to understand how objects are 
represented in human visual memory. A central component in object recognition 
is the matching of the stored object representation with that derived from the im­
age input. But the nature of the object representation has to be inferred from 
recognition performance, by taking into account the contribution from the image 
information. When evaluating human performance, how can one separate the con-



830 Z Liu and D. Kersten 

tributions to performance of the image information from the representation? Ideal 
observer analysis provides a precise computational tool to answer this question. An 
ideal observer's recognition performance is restricted only by the available image 
information and is otherwise optimal , in the sense of statistical decision theory, 
irrespective of how the model is implemented. A comparison of human to ideal 
performance (often in terms of efficiency) serves to normalize performance with re­
spect to the image information for the task. We consider the problem of viewpoint 
dependence in human recognition. 

A recent debate in human object recognition has focused on the dependence of recog­
nition performance on viewpoint [1 , 6]. Depending on the experimental conditions, 
an observer's ability to recognize a familiar object from novel viewpoints is impaired 
to varying degrees. A central assumption in the debate is the equivalence in view­
point dependence and recognition performance. In other words, the assumption is 
that viewpoint dependent performance implies a viewpoint dependent representa­
tion, and that viewpoint independent performance implies a viewpoint independent 
representation. However, given that any recognition performance depends on the 
input image information, which is necessarily viewpoint dependent, the viewpoint 
dependence of the performance is neither necessary nor sufficient for the viewpoint 
dependence of the representation. Image information has to be factored out first, 
and the ideal observer provides the means to do this. 

The second aspect of an ideal observer is that it is implementation free. Con­
sider the GRBF model [5], as compared with human object recognition (see be­
low). The model stores a number of 2D templates {Ti} of a 3D object 0, 
and reco~nizes or rejects a stimulus image S by the following similarity measure 
~iCi exp UITi - SI1 2 j2(2 ), where Ci and a are constants. The model's performance 
as a function of viewpoint parallels that of human observers. This observation has 
led to the conclusion that the human visual system may indeed, as does the model, 
use 2D stored views with GRBF interpolation to recognize 3D objects [2]. Such a 
conclusion, however, overlooks implementational constraints in the model, because 
the model's performance also depends on its implementations. Conceivably, a model 
with some 3D information of the objects can also mimic human performance, so 
long as it is appropriately implemented. There are typically too many possible 
models that can produce the same pattern of results. 

In contrast, an ideal observer computes the optimal performance that is only limited 
by the stimulus information and the task. We can define constrained ideals that are 
also limited by explicitly specified assumptions (e.g., a class of matching operations). 
Such a model observer therefore yields the best possible performance among the 
class of models with the same stimulus input and assumptions. In this paper, 
we are particularly interested in constrained ideal observers that are restricted in 
functionally Significant aspects (e.g., a 2D ideal observer that stores independent 
2D templates and has access only to 2D affine transformations) . The key idea is 
that a constrained ideal observer is the best in its class. So if humans outperform 
this ideal observer, they must have used more than what is available to the ideal. 
The conclusion that follows is strong: not only does the constrained ideal fail to 
account for human performance, but the whole class of its implementations are also 
falsified. 

A crucial question in object recognition is the extent to which human observers 
model the geometric variation in images due to the projection of a 3D object onto a 
2D image. At one extreme, we have shown that any model that compares the image 
to independent views (even if we allow for 2D rigid transformations of the input 
image) is insufficient to account for human performance. At the other extreme, it 
is unlikely that variation is modeled in terms of rigid transformation of a 3D object 
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template in memory. A possible intermediate solution is to match the input image 
to stored views, subject to 2D affine deformations. This is reasonable because 2D 
affine transformations approximate 3D variation over a limited range of viewpoint 
change. 

In this study, we test whether any model limited to the independent comparison 
of 2D views, but with 2D affine flexibility, is sufficient to account for viewpoint 
dependence in human recognition. In the following section, we first define our ex­
perimental task, in which the computational models yield the provably best possible 
performance under their specified conditions. We then review the 2D ideal observer 
and GRBF model derived in [4], and the 2D affine nearest neighbor model in [8]. 
Our principal theoretical result is a closed-form solution of a Bayesian 2D affine ideal 
observer. We then compare human performance with the 2D affine ideal model, as 
well as the other three models. In particular, if humans can classify novel views of 
an object better than the 2D affine ideal, then our human observers must have used 
more information than that embodied by that ideal. 

2 The observers 

Let us first define the task. An observer looks at the 2D images of a 3D wire 
frame object from a number of viewpoints. These images will be called templates 
{Td. Then two distorted copies of the original 3D object are displayed. They 
are obtained by adding 3D Gaussian positional noise (i.i.d.) to the vertices of the 
original object. One distorted object is called the target, whose Gaussian noise has 
a constant variance. The other is the distract or , whose noise has a larger variance 
that can be adjusted to achieve a criterion level of performance. The two objects 
are displayed from the same viewpoint in parallel projection, which is either from 
one of the template views, or a novel view due to 3D rotation. The task is to choose 
the one that is more similar to the original object. The observer's performance is 
measured by the variance (threshold) that gives rise to 75% correct performance. 
The optimal strategy is to choose the stimulus S with a larger probability p (OIS). 
From Bayes' rule, this is to choose the larger of p (SIO). 

Assume that the models are restricted to 2D transformations of the image, and 
cannot reconstruct the 3D structure of the object from its independent templates 
{Ti}. Assume also that the prior probability p(Td is constant. Let us represent S 
and Ti by their (x, y) vertex coordinates: (X Y )T, where X = (Xl, x2, ... , xn), 
y = (yl, y2 , ... , yn). We assume that the correspondence between S and T i is 
solved up to a reflection ambiguity, which is equivalent to an additional template: 
Ti = (xr yr )T, where X r = (xn, ... ,x2,xl ), yr = (yn, ... ,y2,yl). We still 
denote the template set as {Td. Therefore, 

(1) 

In what follows, we will compute p(SITi)p(Ti ), with the assumption that S = 
F (Ti) + N (0, crI2n ), where N is the Gaussian distribution, 12n the 2n x 2n identity 
matrix, and :F a 2D transformation. For the 2D ideal observer, :F is a rigid 2D 
rotation. For the GRBF model, F assigns a linear coefficient to each template 
T i , in addition to a 2D rotation. For the 2D affine nearest neighbor model, :F 
represents the 2D affine transformation that minimizes liS - Ti11 2 , after Sand Ti 
are normalized in size. For the 2D affine ideal observer, :F represents all possible 
2D affine transformations applicable to T i. 
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2.1 The 2D ideal observer 

The templates are the original 2D images, their mirror reflections, and 2D rotations 
(in angle ¢) in the image plane. Assume that the stimulus S is generated by adding 
Gaussian noise to a template, the probability p(SIO) is an integration over all 
templates and their reflections and rotations. The detailed derivation for the 2D 
ideal and the GRBF model can be found in [4]. 

Ep(SITi)p(Ti) ex: E J d¢exp (-liS - Ti(¢)112 /2(2 ) • (2) 

2.2 The GRBF model 

The model has the same template set as the 2D ideal observer does. Its training 
requires that EiJ;7r d¢Ci(¢)N(IITj - Ti(¢)II,a) = 1, j = 1,2, ... , with which {cd 
can be obtained optimally using singular value decomposition. When a pair of new 
stimuli is} are presented, the optimal decision is to choose the one that is closer 
to the learned prototype, in other words, the one with a smaller value of 

111- E 127r d¢ci(¢)exp (_liS -2:~(¢)1I2) II. (3) 

2.3 The 2D affine nearest neighbor model 

It has been proved in [8] that the smallest Euclidean distance D(S, T) between S 
and T is, when T is allowed a 2D affine transformation, S ~ S/IISII, T ~ T/IITII, 

D2(S, T) = 1 - tr(S+S . TTT)/IITII2, (4) 

where tr strands for trace, and S+ = ST(SST)-l. The optimal strategy, therefore, 
is to choose the S that gives rise to the larger of E exp (_D2(S, Ti)/2a2) , or the 
smaller of ED2(S, Ti). (Since no probability is defined in this model, both measures 
will be used and the results from the better one will be reported.) 

2.4 The 2D affine ideal observer 

We now calculate the Bayesian probability by assuming that the prior probabil­
ity distribution of the 2D affine transformation, which is applied to the template 

T i , AT + Tr = (~ ~) Ti + (~: ::: ~:), obeys a Gaussian distribution 

N(Xo,,,,/16 ), where Xo is the identity transformation xl' = (a,b,c,d,tx,t y) = 
(1,0,0,1,0,0). We have 

Ep(SIT i ) = E i: dX exp (-IIATi + Tr - SII 2/2(2) (5) 

= EC(n, a, ",/)deC 1 (QD exp (tr (KfQi(QD-1QiKi) /2(12), (6) 

where C(n, a, ",/) is a function of n, a, "'/; Q' = Q + ",/-212, and 

Q _ ( XT . XT XT · Y T ) QK _ ( XT· Xs Y T . Xs) -21 
- Y T ·XT YT ·YT ' - XT ·Ys YT .Ys +"'/ 2· 

(7) 

The free parameters are "'/ and the number of 2D rotated copies for each T i (since 
a 2D affine transformation implicitly includes 2D rotations, and since a specific 
prior probability distribution N(Xo, ",/1) is assumed, both free parameters should 
be explored together to search for the optimal results). 
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Figure 1: Stimulus classes with increasing structural regularity: Balls, Irregular, 
Symmetric, and V-Shaped. There were three objects in each class in the experiment. 

2.5 The human observers 

Three naive subjects were tested with four classes of objects: Balls, Irregular, Sym­
metric, and V-Shaped (Fig. 1). There were three objects in each class. For each 
object, 11 template views were learned by rotating the object 60° /step, around 
the X- and Y-axis, respectively. The 2D images were generated by orthographic 
projection, and viewed monocularly. The viewing distance was 1.5 m. During the 
test, the standard deviation of the Gaussian noise added to the target object was 
(J"t = 0.254 cm. No feedback was provided. 

Because the image information available to the humans was more than what was 
available to the models (shading and occlusion in addition to the (x, y) positions of 
the vertices), both learned and novel views were tested in a randomly interleaved 
fashion. Therefore, the strategy that humans used in the task for the learned and 
novel views should be the same. The number of self-occlusions, which in princi­
ple provided relative depth information, was counted and was about equal in both 
learned and novel view conditions. The shading information was also likely to be 
equal for the learned and novel views. Therefore, this additional information was 
about equal for the learned and novel views, and should not affect the comparison 
of the performance (humans relative to a model) between learned and novel views. 
We predict that if the humans used a 2D affine strategy, then their performance 
relative to the 2D affine ideal observer should not be higher for the novel views than 
for the learned views. One reason to use the four classes of objects with increasing 
structural regularity is that structural regularity is a 3D property (e.g., 3D Sym­
metric vs. Irregular), which the 2D models cannot capture. The exception is the 
planar V-Shaped objects, for which the 2D affine models completely capture 3D ro­
tations, and are therefore the "correct" models. The V-Shaped objects were used in 
the 2D affine case as a benchmark. If human performance increases with increasing 
structural regularity of the objects, this would lend support to the hypothesis that 
humans have used 3D information in the task. 

2.6 Measuring performance 

A stair-case procedure [7] was used to track the observers' performance at 75% 
correct level for the learned and novel views, respectively. There were 120 trials 
for the humans, and 2000 trials for each of the models. For the GRBF model, 
the standard deviation of the Gaussian function was also sampled to search for 
the best result for the novel views for each of the 12 objects, and the result for 
the learned views was obtained accordingly. This resulted in a conservative test 
of the hypothesis of a GRBF model for human vision for the following reasons: 
(1) Since no feedback was provided in the human experiment and the learned and 
novel views were randomly intermixed, it is not straightforward for the model to 
find the best standard deviation for the novel views, particularly because the best 
standard deviation for the novel views was not the same as that for the learned 
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ones. The performance for the novel views is therefore the upper limit of the 
model's performance. (2) The subjects' performance relative to the model will be 
defined as statistical efficiency (see below). The above method will yield the lowest 
possible efficiency for the novel views, and a higher efficiency for the learned views, 
since the best standard deviation for the novel views is different from that for the 
learned views. Because our hypothesis depends on a higher statistical efficiency for 
the novel views than for the learned views, this method will make such a putative 
difference even smaller. Likewise, for the 2D affine ideal, the number of 2D rotated 
copies of each template Ti and the value I were both extensively sampled, and the 
best performance for the novel views was selected accordingly. The result for the 
learned views corresponding to the same parameters was selected. This choice also 
makes it a conservative hypothesis test. 

3 Results 
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Figure 2: The threshold standard deviation of the Gaussian noise, added to the 
distractor in the test pair, that keeps an observer's performance at the 75% correct 
level, for the learned and novel views, respectively. The dotted line is the standard 
deviation of the Gaussian noise added to the target in the test pair. 

Fig. 2 shows the threshold performance. We use statistical efficiency E to com­
pare human to model performance. E is defined as the information used by 
humans relative to the ideal observer [3] : E = (d~uman/d~deal)2, where d' 
is the discrimination index. We have shown in [4] that, in our task, E = 

((a~1!f;actor)2 - (CTtarget)2) / ((CT~~~~~tor)2 - (CTtarget)2) , where CT is the thresh­
old. Fig. 3 shows the statistical efficiency of the human observers relative to each 
of the four models. 

We note in Fig. 3 that the efficiency for the novel views is higher than those for the 
learned views (several of them even exceeded 100%), except for the planar V-Shaped 
objects. We are particularly interested in the Irregular and Symmetric objects in 
the 2D affine ideal case, in which the pairwise comparison between the learned 
and novel views across the six objects and three observers yielded a significant 
difference (binomial, p < 0.05). This suggests that the 2D affine ideal observer 
cannot account for the human performance, because if the humans used a 2D affine 
template matching strategy, their relative performance for the novel views cannot 
be better than for the learned views. We suggest therefore that 3D information was 
used by the human observers (e.g., 3D symmetry). This is supported in addition 
by the increasing efficiencies as the structural regularity increased from the Balls, 
Irregular, to Symmetric objects (except for the V-Shaped objects with 2D affine 
models). 
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Figure 3: Statistical efficiencies of human observers relative to the 2D ideal observer, 
the GRBF model, the 2D affine nearest neighbor model, and the 2D affine ideal 
observer_ 

4 Conclusions 

Computational models of visual cognition are subject to information theoretic as 
well as implementational constraints. When a model's performance mimics that of 
human observers, it is difficult to interpret which aspects of the model characterize 
the human visual system. For example, human object recognition could be simu­
lated by both a GRBF model and a model with partial 3D information of the object. 
The approach we advocate here is that, instead of trying to mimic human perfor­
mance by a computational model, one designs an implementation-free model for a 
specific recognition task that yields the best possible performance under explicitly 
specified computational constraints. This model provides a well-defined benchmark 
for performance, and if human observers outperform it, we can conclude firmly that 
the humans must have used better computational strategies than the model. We 
showed that models of independent 2D templates with 2D linear operations cannot 
account for human performance. This suggests that our human observers may have 
used the templates to reconstruct a representation of the object with some (possibly 
crude) 3D structural information. 

References 

[1] Biederman I and Gerhardstein P C. Viewpoint dependent mechanisms in visual 
object recognition: a critical analysis. J. Exp. Psych.: HPP, 21: 1506-1514, 1995. 

[2] Biilthoff H H and Edelman S. Psychophysical support for a 2D view interpolation 
theory of object recognition. Proc. Natl. Acad. Sci. , 89:60-64, 1992. 

[3] Fisher R A. Statistical Methods for Research Workers. Oliver and Boyd, Edin­
burgh, 1925. 

[4] Liu Z, Knill D C, and Kersten D. Object classification for human and ideal 
observers. Vision Research, 35:549-568, 1995. 

[5] Poggio T and Edelman S. A network that learns to recognize three-dimensional 
objects. Nature, 343:263-266, 1990. 

[6] Tarr M J and Biilthoff H H. Is human object recognition better described 
by geon-structural-descriptions or by multiple-views? J. Exp. Psych.: HPP, 
21:1494-1505,1995. 

[7] Watson A B and Pelli D G. QUEST: A Bayesian adaptive psychometric method. 
Perception and Psychophysics, 33:113-120, 1983. 

[8] Werman M and Weinshall D. Similarity and affine invariant distances between 
2D point sets. IEEE PAMI, 17:810-814,1995. 



Toward a Single-Cell Account for 
Binocular Disparity Tuning: An Energy 
Model May be Hiding in Your Dendrites 

Bartlett W. Mel 
Department of Biomedical Engineering 

University of Southern California, MC 1451 
Los Angeles, CA 90089 

mel@quake.usc.edu 

Daniel L. Ruderman 
The Salk Institute 

10010 N. Torrey Pines Road 
La Jolla, CA 92037 
ruderman@salk.edu 

Kevin A. Archie 
Neuroscience Program 

University of Southern California 
Los Angeles, CA 90089 
karchie@quake.usc.edu 

Abstract 

Hubel and Wiesel (1962) proposed that complex cells in visual cor­
tex are driven by a pool of simple cells with the same preferred 
orientation but different spatial phases. However, a wide variety of 
experimental results over the past two decades have challenged the 
pure hierarchical model, primarily by demonstrating that many 
complex cells receive monosynaptic input from unoriented LGN 
cells, or do not depend on simple cell input. We recently showed us­
ing a detailed biophysical model that nonlinear interactions among 
synaptic inputs to an excitable dendritic tree could provide the non­
linear subunit computations that underlie complex cell responses 
(Mel, Ruderman, & Archie, 1997). This work extends the result 
to the case of complex cell binocular disparity tuning, by demon­
strating in an isolated model pyramidal cell (1) disparity tuning 
at a resolution much finer than the the overall dimensions of the 
cell's receptive field, and (2) systematically shifted optimal dispar­
ity values for rivalrous pairs of light and dark bars-both in good 
agreement with published reports (Ohzawa, DeAngelis, & Free­
man, 1997). Our results reemphasize the potential importance of 
intradendritic computation for binocular visual processing in par­
ticular, and for cortical neurophysiology in general. 
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1 Introduction 

Binocular disparity is a powerful cue for depth in vision. The neurophysiological 
basis for binocular disparity processing has been of interest for decades, spawned 
by the early studies of Rubel and Wiesel (1962) showing neurons in primary visual 
cortex which could be driven by both eyes. Early qualitative models for disparity 
tuning held that a binocularly driven neuron could represent a particular disparity 
(zero, near, or far) via a relative shift of receptive field (RF) centers in the right 
and left eyes. According to this model, a binocular cell fires maximally when an 
optimal stimulus, e.g. an edge of a particular orientation, is simultaneously centered 
in the left and right eye receptive fields, corresponding to a stimulus at a specific 
depth relative to the fixation point. An account of this kind is most relevant to the 
case of a cortical "simple" cell, whose phase-sensitivity enforces a preference for a 
particular absolute location and contrast polarity of a stimulus within its monocular 
receptive fields. 

This global receptive field shift account leads to a conceptual puzzle, however, when 
binocular complex cell receptive fields are considered instead, since a complex cell 
can respond to an oriented feature nearly independent of position within its monoc­
ular receptive field. Since complex cell receptive field diameters in the cat lie in the 
range of 1-3 degrees, the excessive "play" in their monocular receptive fields would 
seem to render complex cells incapable of signaling disparity on the much finer scale 
needed for depth perception (measured in minutes). 

Intriguingly, various authors have reported that a substantial fraction of complex 
cells in cat visual cortex are in fact tuned to left-right disparities much finer than 
that suggested by the size of the monocular RF's. For such cells, a stimulus deliv­
ered at the proper disparity, regardless of absolute position in either eye, produces 
a neural response in excess of that predicted by the sum of the monocular responses 
(Pettigrew, Nikara, & Bishop, 1968; Ohzawa, DeAngelis, & Freeman, 1990; Ohzawa 
et al., 1997). Binocular responses of this type suggest that for these cells, the left 
and right RF's are combined via a correlation operation rather than a simple sum 
(Nishihara & Poggio, 1984; Koch & Poggio, 1987). This computation has also been 
formalized in terms of an "energy" model (Ohzawa et al., 1990, 1997), building 
on the earlier use of energy models to account for complex cell orientation tuning 
(Pollen & Ronner, 1983) and direction selectivity (Adelson & Bergen, 1985). In 
an energy model for binocular disparity tuning, sums of linear Gabor filter out­
puts representing left and right receptive fields are squared to produce the crucial 
multiplicative cross terms (Ohzawa et al., 1990, 1997). 

Our previous biophysical modeling work has shown that the dendritic tree of a cor­
tical pyramidal cells is well suited to support an approximative high-dimensional 
quadratic input-output relation, where the second-order multiplicative cross terms 
arise from local interactions among synaptic inputs carried out in quasi-isolated 
dendritic "subunits" (Mel, 1992b, 1992a, 1993). We recently applied these ideas 
to show that the position-invariant orientation tuning of a monocular complex cell 
could be computed within the dendrites of a single cortical cell, based exclusively 
upon excitatory inputs from a uniform, overlapping population of unoriented ON 
and OFF cells (Mel et al., 1997). Given the similarity of the "energy" formulations 
previously proposed to account for orientation tuning and binocu~ar disparity tun­
ing, we hypothesized that a similar type of dendritic subunit computation could 
underlie disparity tuning in a binocularly driven complex cell. 
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Parameter Value 
Rm IOkOcm:l 
Ra 2000cm 

em 1.0ILF/cm~ 

Vrest -70 mV 
Compartments 615 

Somatic !iNa, YnR 0.20,0.12 S/cm:l 

Dendritic !iNa, YnR 0.05,0.03 S/cm:t. 
Input frequency 0- 100 Hz 
gAMPA 0.027 nS - 0.295 nS 
TAMPA (on, of f) 0.5 ms, 3 ms 
gNMDA 0.27 nS - 2.95 nS 
7'NMDA (on, off) 0.5 ms, 50 ms 
Esyn OmV 

Table 1: Biophysical simulation parameters. Details of HH channel implementa­
tion are given elsewhere (Mel, 1993); original HH channel implementation cour­
tesy Ojvind Bernander and Rodney Douglas. In order that local EPSP size be 
held approximately constant across the dendritic arbor, peak synaptic conduc­
tance at dendritic location x was approximately scaled to the local input resis­
tance (inversely), given by 9syn(X) = C/Rin(X), where c was a constant, and 
Rin(X) = max(Rin(X),200MO). Input resistance Rin(X) was measured for a pas­
sive cell. Thus 9syn was identical for all dendritic sites with input resistance below 
200MO, and was given by the larger conductance value shown; roughly 50% of the 
tree fell within a factor of 2 of this value. Peak conductances at the finest distal tips 
were smaller by roughly a factor of 10 (smaller number shown). Somatic input resis­
tance was near 24MO. The peak synaptic conductance values used were such that 
the ratio of steady state current injection through NMDA vs. AMPA channels was 
1.2±0.4. Both AMPA and NMDA-type synaptic conductances were modeled using 
the kinetic scheme of Destexhe et al. (1994); synaptic activation and inactivation 
time constants are shown for each. 

2 Methods 

Compartmental simulations of a pyramidal cell from cat visual cortex (morphol­
ogy courtesy of Rodney Douglas and Kevan Martin) were carried out in NEURON 
(Hines, 1989); simulation parameters are summarized in Table 1. The soma and den­
dritic membrane contained Hodgkin-Huxley-type (HH) voltage-dependent sodium 
and potassium channels. Following evidence for higher spike thresholds and decre­
mental propagation in dendrites (Stuart & Sakmann, 1994), HH channel density was 
set to a uniform, 4-fold lower value in the dendritic membrane relative to that of the 
cell body. Excitatory synapses from LGN cells included both NMDA and AMPA­
type synaptic conductances. Since the cell was considered to be isolated from the 
cortical network, inhibitory input was not modeled. Cortical cell responses were 
reported as average spike rate recorded at the cell body over the 500 ms stimulus 
period, excluding the 50 ms initial transient. 

The binocular LGN consisted of two copies of the monocular LGN model used 
previously (Mel et al., 1997), each consisting of a superimposed pair of 64x64 ON 
and OFF subfields. LGN cells were modeled as linear, half-rectified center-surround 
filters with centers 7 pixels in width. We randomly subsampled the left and right 
LGN arrays by a factor of 16 to yield 1,024 total LGN inputs to the pyramidal cell. 
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A developmental principle was used to determine the spatial arrangement of these 
1,024 synaptic contacts onto the dendritic branches of the cortical cell, as follows. 
A virtual stimulus ensemble was defined for the cell, consisting of the complete set 
of single vertical light or dark bars presented binocularly at zero-disparity within 
the cell's receptive field. Within this ensemble, strong pairwise correlations existed 
among cells falling into vertically aligned groups of the same (ON or OFF) type, 
and cells in the vertical column at zero horizontal disparity in the other eye. These 
binocular cohorts of highly correlated LGN cells were labeled mutual "friends". 
Progressing through the dendritic tree in depth first order, a randomly chosen LG N 
cell was assigned to the first dendritic site. A randomly chosen "friend" of hers 
was assigned to the second site, the third site was assigned to a friend of the site 2 
input, etc., until all friends in the available subsample were assigned (4 from each 
eye, on average). If the friends of the connection at site i were exhausted, a new 
LGN cell was chosen at random for site i + 1. In earlier work, this type of synaptic 
arrangement was shown to be the outcome of a Hebb-type correlational learning 
rule, in which random, activity independent formation of synaptic contacts acted 
to slowly randomize the axo-dendritic interface, shaped by Hebbian stabilization of 
synaptic contacts based on their short-range correlations with other synapses. 

3 Results 

Model pyramidal cells configured in this way exhibited prominent phase-invariant 
orientation tuning, the hallmark response property of the visual complex cell. Mul­
tiple orientation tuning curves are shown, for example, for a monocular complex cell, 
giving rise to strong tuning for light and dark bars across the receptive field (fig. 1). 
The bold curve shows the average of all tuning curves for this cell; the half-width at 
half max is 25°, in the normal range for complex cells in cat visual cortex (Orban, 
1984). When the spatial arrangement of LGN synaptic contacts onto the pyra­
midal cell dendrites was randomly scrambled, leaving all other model parameters 
unchanged, orientation tuning was abolished in this cell (right frame), confirming 
the crucial role of spatially-mediated nonlinear synaptic interactions (average curve 
from left frame is reproduced for comparison). 

Disparity-tuning in an orientation-tuned binocular model cell is shown in fig. 2, com­
pared to data from a complex cell in cat visual cortex (adapted from Ohzawa et al. 
(1997)). Responses to contrast matched (light-light) and contrast non-matched 
(light-dark) bar pairs were subtracted to produce these plots. The strong diagonal 
structure indicates that both the model and real cells responded most vigorously 
when contrast-matched bars were presented at the same horizontal position in the 
left and right-eye RF's (Le. at zero-disparity), whereas peak responses to contrast­
non-matched bars occured at symmetric near and far, non-zero disparities. 

4 Discussion 

The response pattern illustrated in fig. 2A is highly similar to the response generated 
by an analytical binocular energy model for a complex cell (Ohzawa et al., 1997): 

{exp (-kXi) cos (271' f XL) + exp (-kX'kJ cos (271' f XR)}2 + 
{exp (-kxiJ sin (271' f XL) + exp (-kXh) sin (271' f XR)}2, 

(1) 

where XL and X R are the horizontal bar positions to the two eyes, k is the factor 



212 

70 

60 

'0 50 Ql 

~ 
Ql 40 "'" '5. 

~ .e 
Ql 30 (/) 
c: 
8. 20 (/) 
Ql ex: 

10 

0 
-90 

Orientation Tuning 

average +­
lightO -+­
dark 4 -€I­
light 8 ,,*-

light16 .... -
dark 16 -ll-

-60 -30 0 30 60 90 
Orientabon (degrees) 

U 
Ql 
(/) 

Us 
Ql 

"'" '5. 
.e 
Ql 
(/) 
c: 
8. 
(/) 
Ql 

ex: 

B. W. Mel, D_ L Ruderman and K. A. Archie 

Ordered vs. Scrambled 

55 

50 ordered -scrambled -+-
45 

40 

35 

30 

25 

20 
"' + , 15 /'--- / , ~ 

'+---- / 
10 + I ' +_+- ~ 

5 
-90 -60 -30 0 30 60 90 

Orientation (degrees) 

Figure 1: Orientation tuning curves are shown in the left frame for light and dark 
bars at 3 arbitrary positions_ Essentially similar responses were seen at other re­
ceptive field positions, and for other complex cells_ Bold trace indicates average 
of tuning curves at positions 0, 1, 2, 4, 8, and 16 for light and dark bars. Similar 
form of 6 curves shown reflects the translation-invariance of the cell's response to 
oriented stimuli, and symmetry with respect to ON and OFF input. Orientation 
tuning is eliminated when the spatial arrangement of LGN synapses onto the model 
cell dendrites is randomly scrambled (right frame). 
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Figure 2: Comparison of disparity tuning in model complex cell to that of a binoc­
ular complex cell from cat visual cortex. Light or dark bars were presented simul­
taneously to the left and right eyes. Bars could be of same polarity in both eyes 
(light, light) or different polarity (light, dark); cell responses for these two cases were 
subtracted to produce plot shown in left frame. Right frame shows data similarly 
displayed for a binocular complex cell in cat visual cortex (adapted from Ohzawa 
et al. (1997)). 
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that determines the width of the subunit RF's, and f is the spatial frequency. 

In lieu of literal simple cell "subunits" , the present results indicate that the subunit 
computations associated with the terms of an energy model could derive largely 
from synaptic interactions within the dendrites of the individual cortical cell, driven 
exclusively by excitatory inputs from unoriented, monocular ON and OFF cells 
drawn from a uniform overlapping spatial distribution. While lateral inhibition 
and excitation play numerous important roles in cortical computation, the present 
results suggest they are not essential for the basic features of the nonlinear disparity 
tuned responses of cortical complex cells. Further, these results address the paradox 
as to how inputs from both unoriented LGN cells and oriented simple cells can 
coexist without conflict within the dendrites of a single complex cell. 

A number of controls from previous work suggest that this type of subunit process­
ing is very robustly computed in the dendrites of an individual neuron, with little 
sensitivity to biophysical parameters and modeling assumptions, including details of 
the algorithm used to spatially organize the genicula-cortical projection, specifics of 
cell morphology, synaptic activation density across the dendritic tree, passive mem­
brane and cytoplasmic parameters, and details of the kinetics, voltage-dependence, 
or spatial distribution of the voltage-dependent dendritic channels. 

One important difference between a standard energy model and the intradendritic 
responses generated in the present simulation experiments is that the energy model 
has oriented RF structure at the linear (simple-cell-like) stage, giving rise to ori­
ented, antagonistic ON-OFF subregions (Movshon, Thompson, & Tolhurst, 1978), 
whereas the linear stage in our model gives rise to center-surround antagonism only 
within individual LGN receptive fields. Put another way, the LGN-derived subunits 
in the present model cannot provide all the negative cross-terms that appear in the 
energy model equations, specifically for pairs of pixels that fall outside the range of 
a single LG N receptive field. 

While the present simulations involve numerous simplifications relative to the full 
complexity of the cortical microcircuit, the results nonetheless emphasize the po­
tential importance of intradendritic computation in visual cortex. 
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