
Recurrent Neural Networks Can Learn to
Implement Symbol-Sensitive Counting

Paul Rodriguez
Department of Cognitive Science

University of California, San Diego
La Jolla, CA. 92093

prodrigu@cogsci.ucsd.edu

Janet Wiles
School of Information Technology and

Department of Psychology
University of Queensland

Brisbane, Queensland 4072 Australia
janetw@it.uq.edu.au

Abstract

Recently researchers have derived formal complexity analysis of analog
computation in the setting of discrete-time dynamical systems. As an
empirical constrast, training recurrent neural networks (RNNs) produces
self -organized systems that are realizations of analog mechanisms. Pre­
vious work showed that a RNN can learn to process a simple context-free
language (CFL) by counting. Herein, we extend that work to show that a
RNN can learn a harder CFL, a simple palindrome, by organizing its re­
sources into a symbol-sensitive counting solution, and we provide a dy­
namical systems analysis which demonstrates how the network: can not
only count, but also copy and store counting infonnation.

1 INTRODUCTION

Several researchers have recently derived results in analog computation theory in the set­
ting of discrete-time dynamical systems(Siegelmann, 1994; Maass & Opren, 1997; Moore,
1996; Casey, 1996). For example, a dynamical recognizer (DR) is a discrete-time continu­
ous dynamical system with a given initial starting point and a finite set of Boolean output
decision functions(pollack. 1991; Moore, 1996; see also Siegelmann, 1993). The dynami­
cal system is composed of a space,~n , an alphabet A, a set of functions (1 per element of A)
that each maps ~n -+ ~n and an accepting region H lie, in ~n. With enough precision and
appropriate differential equations, DRs can use real-valued variables to encode contents of
a stack or counter (for details see Siegelmann, 1994; Moore, 1996).

As an empirical contrast, training recurrent neural networks (RNNs) produces self­
organized implementations of analog mechanisms. In previous work we showed that an
RNN can learn to process a simple context-free language, anbn , by organizing its resources
into a counter which is similar to hand-coded dynamical recognizers but also exhibits some

88 P. Rodriguez and J. Wiles

novelties (Wlles & Elman, 1995). In particular, similar to band-coded counters, the network
developed proportional contracting and expanding rates and precision matters - but unex­
pectedly the network distributed the contraction/expansion axis among hidden units, devel­
oped a saddle point to transition between the first half and second half of a string, and used
oscillating dynamics as a way to visit regions of the phase space around the fixed points.
In this work we show that an RNN can implement a solution for a harder CFL, a simple
palindrome language(desaibed below), which requires a symbol-sensitive counting solu­
tion. We provide a dynamical systems analysis which demonstrates how the network can
not only count, but also copy and store counting information implicitly in space around a
fixed point.

2 TRAINING an RNN TO PROCESS CFLs

We use a discrete-time RNN that has 1 hidden layer with recurreot connections, and 1 output
layer withoutrecurreot connections so that the accepting regions are determined by the out­
put units. The RNN processes output in Tune(n), where n is the length of the input, and it
can recognize languages that are a proper subset of context-sensitive languages and a proper
superset of regular languages(Moore, 1996). Consequently, the RNN we investigate can in
principle embody the computational power needed to process self-recursion.

Furthermore, many connectionist models of language processing have used a prediction
task(e.g. Elman, 1990). Hence, we trained an RNN to be a real-time transducer version
of a dynamical recognizer that predicts the next input in a sequence. Although the network
does not explicitly accept or reject strings, if our network makes all the right predictions
possible then perlorming the prediction task subsumes the accept task, and in principle one
could simply reject unmatched predictions. We used a threshbold criterion of .5 such that if
an ouput node has a value greater than .5 then the network is considered to be making that
prediction. If the network makes all the right predictions possible for some input string,
then it is correctly processing that string. Although a finite dimensional RNN cannot pro­
cess CFLs robustly with a margin for error (e.g.Casey, 1996;Maass and Orponen,I997), we
will show that it can acquire the right kind of trajectory to process the language in a way
that generalizes to longer strings.

2.1 A SIMPLE PALINDROME LANGUAGE

A palindrome language (mirror language) consists of a set of strings, S, such that each
string, 8 eS, 8 = wwr , is a concatenation of a substring, w, and its reverse, wr • The rele­
vant aspect of this language is that a mechanism cannot use a simple counter to process the
string but must use the functional equivalent of a stack that enables it to match the symbols
in second half of the string with the first half.

We investigated a palindrome language that uses only two symbols for w, two other sym­
boIs for w r , such that the second half of the string is fully predictable once the change in
symbols occurs. The language we used is a simple version restricted such that one sym­
bol is always present and precedes the other, for example: w = anbm , wr = Bm An, e.g.
aaaabbbBBBAAAA, (where n > 0, m >= 0). Note that the embedded subsequence
bm B m is just the simple-CFL used in Wlles & Elman (1995) as mentioned above, hence,
one can reasonably expect that a solution to this task has an embedded counter for the sub­
sequence b ... B.

202 LINEAR SYSTEM COUNTERS

A basic counter in analog computation theory uses real-valued precision (e.g. Siegelman
1994; Moore 1996). For example, a l-dimensional up/down counter for two symbols { a I b}

RNNs Can Learn Symbol-Sensitive Counting 89

is the system J(z) = .5z + .5a, J(z) = 2z - .5b where z is the state variable, a is the input
variable to count up(push), and b is the variable to count down(pop). A sequence of input
aaabbb has state values(starting at 0): .5,.75,.875, .75,.5,0.

Similarly, for our transducer version one can develop piecewise linear system equations in
which counting takes place along different dimensions so that different predictions can be
made at appropriate time stepSI. The linear system serves as a hypothesis before running any
simulations to understand the implementation issues for an RNN. For example, using the
function J(z) = z for z E [0,1], ° for z < 0, 1 for z > 1, then for the simple palindrome
task one can explicitly encode a mechanism to copy and store the count for a across the
b ... B subsequences. If we assign dimension-l to a, dimension-2 to b, dimension-3 to A,
dimension-4 to B, and dimension-5 to store the a value, we can build a system so that for
a sequence aaabbBBAAA we get state variables values: initial, (0,0,0,0,0), (.5,0,0,0,0),
(.75,0,0,0,0), (.875,0,0,0,0), (0,.5,0,0,.875), (0,.75,0,0,.875), (0,0,0,.5,.875), (0,0,0,0,.875),
(0,0,.75,0,0), (0,0,.5,0,0), (0,0,0,0,0). The matrix equations for such a system could be:

Xt = J([~5 .~ ~ ~ ~ 1 * Xt- 1 + [~5 1 ~l ::: 1 * It}
o 2 ° 2 ° ° -5 ° -1
1 ° ° ° 1 -5 ° -5 °

where t is time, X t is the 5-dimensional state vector, It is the 4-dimensional input vector
using l-hotencodingofa = [1,0,0,0];6 = [O,I,O,O];A = [O,O,I,O],B = [0,0,0,1].
The simple trick is to use the input weights to turn on or off the counting. For example,
the dimension-5 state variable is turned off when input is a or A, but then turned on when
b is input, at which time it copies the last a value and holds on to it. It is then easy to add
Boolean output decision functions that keep predictions linearly separable.

However, other solutions are possible. Rather than store the a count one could keep count­
ing up in dimension-l for b input and then cancel it by counting down for B input. The
questions that arise are: Can an RNN implement a solution that generalizes? What kind of
store and copy mechanism does an RNN discover?

1.3 TRAINING DATA & RESULTS

The training set consists of 68 possible strings of total length $ 25, which means a maxi­
mum of n + m = 12, or 12 symbols in the first half, 12 symbols in the second half, and
1 end symbol 2. The complete training set has more short strings so that the network does
not disregard the transitions at the end of the string or at the end of the b ... B subsequence.
The network consists of 5 input, 5 hidden, 5 output units, with a bias node. The hidden and
recurrent units are updated in the same time step as the input is presented. The recurrent
layer activations are input on the next time step. The weight updates are performed using
back-propagation thru time training with error injected at each time step backward for 24
time stepS for each input.

We found that about half our simulations learn to make predictions for transitions, and most
will have few generalizations on longer strings not seen in the training set. However, no
network learned the complete training set perfectly. The best network was trained for 250K
sweeps (1 per character) with a learning parameter of .001, and 136K more sweeps with
.0001, for a total of about 51K strings. The network made 28 total prediction errors on 28

l1bese can be expanded relatively easily to include more symbols, different symbol representa­
tions, harder palindrome sequences, or different kind of decision planes.

2We removed training strings w = a"b,for n > 1; it turns out that the network interpolates on
the B-to-A transition for these. Also, we added an end symbol to help reset the system to a consistent
starting value.

90 P. Rodriguez and 1. Wiles

different strings in the test set of 68 possible strings seen in training. All of these errors were
isolated to 3 situations: when the number of a input = 2or4 the error occurred at the B-to­
A transition, when the number of a input = 1, for m > 2, the error occurred as an early
A-to-end transition.

Importantly, the networlcmade correct predictions on many strings longer than seen in train­
ing, e.g. strings that have total length > 25 (or n + m > 12). It counted longer strings
of a .. As with or without embedded b .. Bs; such as: w = a13 ; w = a13b2 ; w = an b7 , n =
6, 7or8 (recall that w is the first half of the string). It also generalized to count longer subse­
quences ofb .. Bs withorwithoutmorea .. As; suchasw = a5h'" where n = 8,9,10,11,12.
The longest string it processed correctly was w = a9 b9 , which is 12 more characters than
seen during training. The network learned to store the count for a 9 for up to 9bs, even though
the longest example it had seen in training had only 3bs - clearly it's doing something right.

2.4 NETWORK EVALUATION

Our evaluation will focus on how the best network counts, copies, and stores information.
We use a mix of graphical analysis and linear system analysis, to piece together a global
picture of how phase space trajectories hold informational states. The linear system analysis
consists of investigating the local behaviour of the Jacobian at fixed points under each input
condition separately. We refer to Fa as the autonomous system under a input condition and
similarly for Fb, FA, and FB.

The most salient aspect to the solution is that the network divides up the processing along
different dimensions in space. By inspection we note that hidden unitl (HUI) takes on low
values for the first half of the string and high values for the second half, which helps keep
the processing linearly separable. Therefore in the graphical analysis of the RNN we can
set HUI to a constant.

FIrst, we can evaluate how the network counts the b .. B subsequences. Again, by inspection
the network uses dimensions HU3,HU4. The graphical analysis in FIgure Ia and Figure Ib
plots the activity ofHU3xHU4. It shows how the network counts the right number of Bs and
then makes a transition to predict the first A. The dominant eigenvalues at the Fb attracting
point and F B saddle point are inversely proportional, which indicates that the contraction
rate to and expansion rate away from the fixed points are inversely matched. The FB sys­
tem expands out to a periodic-2 fixed point in HU3xHU4 subspace, and the unstable eigen­
vector corresponding to the one unstable eigenvalue has components only in HU3,HU4. In
Fi~ure 2 we plot the vector field that describes the flow in phase space for the composite
F B' which shows the direction where the system contracts along the stable manifold, and
expands on the unstable manifold. One can see that the nature of the transition after the last
b to the first B is to place the state vector close to saddle point for FB so that the number of
expansion steps matches the number of the Fb contraction steps. In this way the b count is
copied over to a different region of phase space.

Now we evaluate how the network counts a ... A, first without any b ... B embedding. Since
the output unit for the end symbol bas very high weight values for HU2, and the Fa system
bas little activity in HU4, we note that a is processed in HU2xHU3xHU5. The trajectories
in Figure 3 show a plot of a 13 A 13 that properly predicts all As as well as the transition at
the end. Furthermore, the dominant eigenvalues for the Fa attracting point and the FA sad­
dle point are nearly inversely proportional and the FA system expands to a periodic-2 fixed
point in 4-dimensions (HUI is constant, whereas the other HU values are periodic). The
Fa eigenvectors have strong-moderate components in dimensions HU2, HU3, HU5; and
likewise in HU2, HU3, HU4, HU5 for FA.

The much harder question is: How does the network maintain the information about the
count of as that were input while it is processing the b .. B subsequence? Inspection shows

RNNs Can Learn Symbol-Sensitive Counting 91

that after processing an the activation values are not directly copied over any HU values,
nor do they latch any HU values that indicate how many as were processed. Instead, the
last state value after the last a affects the dynamics for b ... B in such a way that clusters the
last state value after the last B, but only in HU3xHU4 space (since the other HU dimensions
were unchanging throughout b ... B processing).

We show in Figure 4 the clusters for state variables in HU3xHU4 space after processing
an bm B m , where n = 2,3,4, 50r6; m = 1 .. 10. The graph shows that the information about
how many a's occurred is "stored" in the HU3xHU4 region where points are clustered. Fig­
ure 4 includes the dividing line from Figure Ib for the predict A region. The network does
not predict the B-to-A transition after a4 or a2 because it ends up on the wrong side of the
dividing line of Figure Ib, but the network in these cases still predicts the A-to-end transi­
tion. We see that if the network did not oscillate around the F B saddle point while exanding
then the trajectory would end up correctly on one side of the decision plane.

It is important to see that the clusters themselves in Figure 4 are on a contracting trajec­
tory toward a fixed point, which stores information about increasing number of as when
matched by an expansion of the FA system. For example, the state values after a5 AA and
a5 bm Bm AA, m = 2 .. 10 have a total hamming distance for all 5 dimensions that ranged
from .070 to .079. Also, the fixed point for the Fa. system, the estimated fixed point for the
composite F'B 0 Fb 0 F;: , and the saddle point of the FA system are colinear 3. in all the
relevant counting dimensions: 2,3,4, and 5. In other words, the FA system contracts the
different coordinate points, one for an and one for anbm B m , towards the saddle point to
nearly the same location in phase space, treating those points as having the same informa­
tion. Unfortunately, this is a contraction occuring through a 4 dimensional subspace which
we cannot easily show grapbically.

3 CONCLUSION

In conclusion, we have shown that an RNN can develop a symbol-sensitive counting s0-

lution for a simple palindrome. In fact, this solution is not a stack but consists of non­
independent counters that use dynamics to visit different regions at appropriate times. Fur­
thermore, an RNN can implement counting solutions for a prediction task that are function­
ally similar to that prescribed by analog computation theory, but the store and copy functions
rely on distance in phase space to implicitly affect other trajectories.

Acknowledgements

This research was funded by the UCSD, Center for Research in Language Training Grant
to Paul Rodriguez, and a grant from the Australian Research Council to Janet Wlles.

References

Casey, M. (1996) The Dynamics of Discrete-TIme Computation, With Application to Re­
current Neural Networks and Fmite State Machine Extraction. Neural Computation, 8.

Elman, JL. (1990) Finding Structure in TIme. Cognitive Science, 14, 179-211.

Maass, W. ,Orponen, P. (1997) On the Effect of Analog Noise in Discrete-TIme Analog
Computations. Proceedings Neural Information Processing Systems, 1996.

Moore, C. (1996) Dynamical Recognizers: Real-TIme Language Recognition by Analog
Computation. Santa Fe InstituteWorking Paper 96-05-023.

)Relative to the saddle point, the vector for one fixed point, multiplied by a constant had the same
value(to within .OS) in each of 4 dimensions as the vector for the other fixed point

92

HU4
1

0.8

0.6

0 . 4

0.2

o
o

p~ct b regiOD

0.2 0.4 0.6 0.8

HU4
1

0.8

0 . 6

0 . 4
p~ctB

~giOD

P. Rodriguez and 1. Wiles

0.2 ,---
",

o
o~~':"'o .~2--0:-.~4 -"":0-. 6=----=-0"":. 8:---~1 HU3

Figure 1: la)Trajectory of 610 (after 0 5) in HU3xHU4. Each arrow represents a trajectory
step:the base is a state vector at time t, the head is a state at time t + 1. The first b trajectory
step has a base near (.9,.05), which is the previous state from the last o. The output node
b is> .5 above the dividing line. Ib) Trajectory of BI0 (after 05b10) in HU3xHU4. The
output node B is > .5 above the dashed dividing line, and the output node A is > .5 below
the solid dividing line. The system crosses the line on the last B step, hence it predicts the
B-to-A transitioo.

Pollack, J.B. (1991) The Induction of Dynamical Recognizers. Machine Learning, 7, 227-
252.

Siegelmann, H.(1993) Foundations of Recurrent Neural Networks. PhD. dissertation, un­
published. New Brunswick Rutgers, The State University of New Jersey.

Wtles, 1., Elman, J. (1995) Counting Without a Counter: A Case Study in Activation Dy­
namics. Proceedings of the Seventeenth Annual Conference of the Cognitive Science So­
ciety. Hillsdale, N J .: Lawrence Erlbaum Associates.

HU4

0 . 8

\ \ ", _-..,.-/

0.6 t , \ , - ,.
" /

t \ \ \ ~ .. ,
~ " / ,

l ~
, , I ,

" I I ~ , ... • , , I ~

Figure 2: Vector field that desaibes the flow of Fj projected onto HU3xHU4. The graph
shows a saddle point near (.5,.5)and a periodic-2 attracting point.

RNNs Can Learn Symbol-Sensitive Counting 93

0 . 4

predict II reaioo

0.2

o
0---0.-2--0-.-4 --0-.-6 --0-.8--1 802

803
1 I

I ,
I ,

0.8 I
I

0.6

I
0.4 ,

I
I
I
I

o .2 predict eDdrepOIl "
I
I
I

o I

0~-0~.~2--0~.74-~0~.~6-~0~.8~~lmn

Figure 3: 3a) Trajectory of a 13 projected onto HU2xHU3. The output node a is> .5 below
and right of dividing line. The projection for HU2xHU5 is very similar. 3b) Trajectory of
A 13 (after a 13) projected onto HU2xHU3. The output node for the end symbol is > .5 on
the 13th trajectory step left of the solid dividing line, and it is > .5 on the 11th step left
of the dashed dividing line (the hyperplane projection must use values at the appropriate
time steps), hence the system predicts the A-to-end transition. The graph for HU2xHU5
and HU2xHU4 is very similar.

IIU4

" II J/ " 41
fJIJ fJIJ fJIJ fJIJ lib u

1.0 fJIJ

0.9

0.8

0. 7
z ••

fJIJ. , •

0.1 L.-__ --::---:--_:-=-~----:---'':-.:....:-::--_:_::___:_" HU3
0.2 0.3 0 . 4 0 . 5 0 . 6 0.7 0.8 0.9 1.0

Figure4: Clusters of lasts tate values anbm Bm, m > 1, projected onto HU3xHU4. Notice
that for increasing n the system oscillates toward an attracting point of the system F'B 0

Ft:0F:;.

