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Abstract 

One of the current challenges to understanding neural information 
processing in biological systems is to decipher the "code" carried 
by large populations of neurons acting in parallel. We present an 
algorithm for automated discovery of stochastic firing patterns in 
large ensembles of neurons. The algorithm, from the "Helmholtz 
Machine" family, attempts to predict the observed spike patterns in 
the data. The model consists of an observable layer which is directly 
activated by the input spike patterns, and hidden units that are ac­
tivated through ascending connections from the input layer. The 
hidden unit activity can be propagated down to the observable layer 
to create a prediction of the data pattern that produced it. Hidden 
units are added incrementally and their weights are adjusted to im­
prove the fit between the predictions and data, that is, to increase a 
bound on the probability of the data given the model. This greedy 
strategy is not globally optimal but is computationally tractable for 
large populations of neurons. We show benchmark data on artifi­
cially constructed spike trains and promising early results on neuro­
physiological data collected from our chronic multi-electrode cortical 
implant. 

1 Introduction 

Understanding neural processing will ultimately require observing the response 
patterns and interactions of large populations of neurons. While many studies 
have demonstrated that neurons can show significant pairwise interactions, and 
that these pairwise interactions can code stimulus information [Gray et aI., 1989, 
Meister et aI., 1995, deCharms and Merzenich, 1996, Vaadia et al., 1995], there is 
currently little understanding of how large ensembles of neurons might function to­
gether to represent stimuli. This situation has arisen partly out of the historical 
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difficulty of recording from large numbers of neurons simultaneously. Now that this 
is becoming technically feasible, the remaining analytical challenge is to understand 
how to decipher the information carried in distributed neuronal responses. 

Extracting information from the firing patterns in large neuronal populations is dif­
ficult largely due to the combinatorial complexity of the problem, and the uncer­
tainty about how information may be encoded. There have been several attempts 
to look for higher order correlations [Martignon et al., 1997] or decipher the activity 
from multiple neurons, but existing methods are limited in the type of patterns they 
can extract assuming absolute reliability of spikes within temporal patterns of small 
numbers of neurons [Abeles, 1982, Abeles and Gerstein, 1988, Abeles et al., 1993, 
Schnitzer and Meister,] or considering only rate codes [Gat and Tishby, 1993, 
Abeles et al., 1995]. Given the large numbers of neurons involved in coding sensory 
events and the high variability of cortical action potentials, we suspect that mean­
ingful ensemble coding events may be statistically similar from instance to instance 
while not being identical. Searching for these type of stochastic patterns is a more 
challenging task. 

One way to extract the structure in a pattern dataset is to construct a generative 
model that produces representative data from hidden stochastic variables. Helmholtz 
machines [Hinton et al., 1995, Dayan et al., 1995] efficiently [Frey et al., 1996] pro­
duce generative models of datasets by maximizing a lower bound on the log likelihood 
of the data. Cascaded Redundancy Reduction [de Sa and Hinton, 1998] is a partic­
ularly simple form of Helmholtz machine in which hidden units are incrementally 
added. As each unit is added, it greedily attempts to best model the data using all 
the previous units. In this paper we describe how to apply the Cascaded Redun­
dancy Reduction algorithm to the problem of finding patterns in neuronal ensemble 
data, test the performance of this method on artificial data, and apply the method 
to example neuronal spike trains. 

1.1 Cascaded Redundancy Reduction 

The simplest form of generative model is to model each observed (or input) unit as 
a stochastic binary random variable with generative bias bi. This generative input is 
passed through a transfer function to give a probability of firing. 

1 
p. = a(b·) = (1) 

~ ~ 1 + e-bi 

While this can model the individual firing rates of binary units, it cannot account 
for correlations in firing between units. Correlations can be modeled by introducing 
hidden units with generative weights to the correlated observed units. By cascading 
hidden units as in Figure 1, we can represent higher order correlations. Lower units 
sum up their total generative input from higher units and their generative bias. 

Xi = bi + L Sj9j,i 

j>i 

(2) 

Finding the optimal generative weights (9j,i, bi) for a given dataset involves an in­
tractable search through an exponential number of possible states of the hidden units. 
Helmholtz machines approximate this problem by using forward recognition connec­
tions to compute an approximate distribution over hidden states for each data pat­
tern. Cascaded Redundancy Reduction takes this approximation one step further by 
approximating the distribution by a single state. This makes the search for recogni­
tion and generative weights much simpler. Given a data vector, d, considering the 
state produced by the recognition connections as Sd gives a lower bound on the log 



Using Helmholtz Machines to Analyze Multi-channel Neuronal Recordings 

-:.> generative connections 

~ recognition connections 

T 
i,k 

TO,k 

133 

Figure 1: The Cascaded Redundancy Reduction Network. Hidden units are added 
incrementally to help better model the data. 

likelihood of the data. Units are added incrementally with the goal of maximizing 
this lower bound, C, 

C = 'L[(s% log a(bk ) + (l-s%) log(l-a(bk))+ L sf log a(xf)+ (I-sf) log(l-a(xf))] 
d i 

(3) 
Before a unit is added it is considered as a temporary addition. Once its weights 
have been learned, it is added to the permanent network only if adding it reduces 
the cost on an independent validation set from the same data distribution. This is 
to prevent overtraining. While a unit is considered for addition, all weights other 
than those to and from the new unit and the generative bias weights are fixed. The 
learning of the weights to and from the new unit is then a fairly simple optimization 
problem involving treating the unit as stochastic, and performing gradient descent 
on the resulting modified lower bound. 

2 Method 

This generic pattern finding algorithm can be applied to multi-unit spike trains by 
treating time as another spatial dimension as is often done for time series data. The 
spikes are binned on the order of a few to tens of milliseconds and the algorithm looks 
for patterns in finite time length windows by sliding a window centered on each spike 
from a chosen trigger channel. An example extracted window using channel 4 as the 
trigger channel is shown in Figure 2. 

Because the number of spikes can be larger than one, the observed units (bins) are 
modeled as discrete Poisson random variables rather than binary random variables 
(the hidden units are still kept as binary units). To reflect the constraint that the 
expected number of spikes cannot be negative but may be larger than one, the transfer 
function for these observed bins was chosen to be exponential. Thus if Xi is the 
total summed generative input, Ai, the expected mean number of spikes in bin i, is 
calculated as eX; and the probability of finding s spikes in that bin is given by 

s! 
(4) 
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Figure 2: The input patterns for the algorithm are windows from the full spatia­
temporal firing patterns. The full dataset is windows centered about every spike in 
the trigger channel. 

The terms in the lower bound objective function due to the observed bins are modified 
accordingly. 

3 Experimental Results 

Before applying the algorithm to real neural spike trains we have characterized its 
properties under controlled conditions. We constructed sample data containing two 
random patterns across 10 units spanning 100 msec. The patterns were stochastic 
such that each neuron had a probability of firing in each time bin of the pattern. 
Sample patterns were drawn from the stochastic pattern templates and embedded in 
other "noise" spikes. The sample pattern templates are shown in the first column 
of Figure 3. 300 seconds of independent training, validation and test data were 
generated. All results are reported on the test data . 

After training the network, performance was assessed by stepping through the test 
data and observing the pattern of activation across the hidden units obtained from 
propagating activity through the forward (recognition) connections and their corre­
sponding generative pattern {Ad obtained from the generative connections from the 
binary hidden unit pattern. Typically, many of the theoretically possible 2n hidden 
unit patterns do not occur. Of the ones that do, several may code for the noise back­
ground. A crucial issue for interpreting patterns in real neural data is to discover 
which of the hidden unit activity patterns correspond to actual meaningful patterns. 
We use a measure that calculates the quality of the match of the observed pattern 
and the generative pattern it invokes. As the algorithm was not trained on the test 
data, close matches between the generative pattern and the observed pattern imply 
real structure that is common to the training and test dataset. With real neural 
data, this question can also be addressed by correlating the occurrence of patterns to 
stimuli or behavioural states of the animal. 

One match measure we have used to pick out temporally modulated structure is 
the cost of coding the observed units using the hidden unit pattern compared to 
the cost of using the optimal rate code for that pattern (derived by calculating the 
firing rate for each channel in the window excluding the trigger bin). Match values 
were calculated for each hidden unit pattern by averaging the results across all its 
contributing observed patterns. Typical generative patterns of the added template 
patterns (in noise) are shown in the second column of Figure 3. The third column 
in the figure shows example matches from the test set, (Le. patterns that activated 
the hidden unit pattern corresponding to the generative pattern in column 2). Note 
that the instances of the patterns are missing some spikes present in the template, 
and are surrounded by many additional spikes. 



Using Helmholtz Machines to Analyze Multi-channel Neuronal Recordings 135 

Template 

Pattern 1 

Pattern 2 

Generative 
Pattern 

Test set 
Example 

Figure 3: Pattern templates, resulting generative patterns after training (showing the 
expected number of spikes the algorithm predicts for each bin), and example test set 
occurrences. The size and shade of the squares represents the probability of activation 
of that bin (or 0/1 for the actual occurrences), the colorbars go from 0 to 1. 

We varied both the frequency of the pattern occurrences and that of the added 
background spikes. Performance as a function of the frequency of the background 
spikes is shown on the left in Figure 4 for a pattern frequency of .4 Hz. Performance 
as a function of the pattern frequency for a noise spike frequency of 15Hz is shown 
on the right of the Figure. False alarm rates were extremely low ranging from 0-4% 
across all the tested conditions. Also, importantly, when we ran three trials with no 
added patterns"no patterns were detected by the algorithm. 
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Figure 4: Graphs showing the effect of adding more background spikes (left) and 
decreasing the number of pattern occurrences in the dataset (right) on the percentage 
of patterns correctly detected. The detection of shifted pattern is due to the presence 
of a second spike in channel 4 in the pattern (hits for this case are only calculated 
for the times when this spike was present - the others would all be missed). In fact 
in some cases the presence of the only slightly probable 3rd bin in channel 4 was 
enough to detect another shifted pattern 1. Means over 3 trials are plotted with the 
individual trial values given in braces 

The algorithm was then applied to recordings made from a chronic array of extracel­
lular microelectrodes placed in the primary auditory cortex of one adult marmoset 
monkey and one adult owl monkey [deC harms and Merzenich, 1998]. On some elec-
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Figure 5: Data examples (all but top left) from neural recordings in an awake mar­
moset monkey that invoke the same generative pattern (top left). The instances are 
patterns from the test data that activated the same hidden unit activity pattern re­
sulting in the generative pattern in the top left. The data windows were centered 
around all the spikes in channel 4. The brightest bins in the generative pattern rep­
resent an expected number of spikes of 1. 7. In the actual patterns, The darkest and 
smallest bins represent a bin with 1 spike; each discrete grayscale/size jump repre­
sents an additional spike. Each subfigure is indiv!dually normalized to the bin with 
the most spikes. 

trodes spikes were isolated from individual neurons; others were derived from small 
clusters of nearby neurons. Figure 5 shows an example generative pattern (accounting 
for 2.8% of the test data) that had a high match value together with example occur­
rences in the test data. The data were responses recorded to vocalizations played to 
the marmoset monkey, channel 4 was used as the trigger channel and 7 hidden units 
were added. 

4 Discussion 

We have introduced a procedure for searching for structure in multineuron spike 
trains, and particularly for searching for statistically reproducible stochastic temporal 
events among ensembles of neurons. We believe this method has great promise for 
exploring the important question of ensemble coding in many neuronal systems, a 
crucial part of the problem of understanding neural information coding. The strengths 
of this method include the ability to deal with stochastic patterns, the search for any 
type of reproducible structure including the extraction of patterns of unsuspected 
nature, and its efficient, greedy, search mechanism that allows it to be applied to 
large numbers of neurons. 
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