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Abstract 

A directed generative model for binary data using a small number 
of hidden continuous units is investigated. A clipping nonlinear­
ity distinguishes the model from conventional principal components 
analysis. The relationships between the correlations of the underly­
ing continuous Gaussian variables and the binary output variables 
are utilized to learn the appropriate weights of the network. The 
advantages of this approach are illustrated on a translationally in­
variant binary distribution and on handwritten digit images. 

Introduction 

Principal Components Analysis (PCA) is a widely used statistical technique for rep­
resenting data with a large number of variables [1]. It is based upon the assumption 
that although the data is embedded in a high dimensional vector space, most of 
the variability in the data is captured by a much lower climensional manifold. In 
particular for PCA, this manifold is described by a linear hyperplane whose char­
acteristic directions are given by the eigenvectors of the correlation matrix with 
the largest eigenvalues. The success of PCA and closely related techniques such as 
Factor Analysis (FA) and PCA mixtures clearly indicate that much real world data 
exhibit the low dimensional manifold structure assumed by these models [2, 3]. 

However, the linear manifold structure of PCA is not appropriate for data with 
binary valued variables . Binary values commonly occur in data such as computer 
bit streams, black-and-white images, on-off outputs of feature detectors, and elec­
trophysiological spike train data [4]. The Boltzmann machine is a neural network 
model that incorporates hidden binary spin variables, and in principle, it should be 
able to model binary data with arbitrary spin correlations [5]. Unfortunately, the 
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Figure 1: Generative model for N-dimensional binary data using a small number 
p of continuous hidden variables. 

computational time needed for training a Boltzmann machine renders it impractical 
for most applications. 

In these proceedings, we present a model that uses a small number of continuous 
hidden variables rather than hidden binary variables to capture the variability of 
binary valued visible data. The generative model differs from conventional peA 
because it incorporates a clipping nonlinearity. The resulting spin configurations 
have an entropy related to the number of hidden variables used, and the resulting 
states are connected by small numbers of spin flips. The learning algorithm is par­
ticularly simple, and is related to peA by a scalar transformation of the correlation 
matrix. 

Generative Model 

Figure 1 shows a schematic diagram of the generative process. As in peA, the 
model assumes that the data is generated by a small number P of continuous hidden 
variables Yi . Each of the hidden variables are assumed to be drawn independently 
from a normal distribution with unit variance: 

P(Yi) = exp( -yt /2)/~. (1) 

The continuous hidden variables are combined using the feedforward weights Wij , 

and the N binary output units are then calculated using the sign of the feedforward 
acti vations: 

P 

Xi = L WijYj (2) 
j=l 

Si sgn(xi). (3) 

Since binary data is commonly obtained by thresholding, it seems reasonable that 
a proper generative model should incorporate such a clipping nonlinearity. The 
generative process is similar to that of a sigmoidal belief network with continuous 
hidden units at zero temperature. The nonlinearity will alter the relationship be­
tween the correlations of the binary variables and the weight matrix W as described 
below. 

The real-valued Gaussian variables Xi are exactly analogous to the visible variables 
of conventional peA. They lie on a linear hyperplane determined by the span of 
the matrix W, and their correlation matrix is given by: 

cxx = (xxT ) = WWT . (4) 
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Figure 2: Binary spin configurations Si in the vector space of continuous hidden 
variables Yj with P = 2 and N = 3. 

By construction, the correlation matrix CXX has rank P which is much smaller 
than the number of components N. Now consider the binary output variables 
Si = sgn(xd· Their correlations can be calculated from the probability distribution 
of the Gaussian variables Xi: 

where 

(CSS)ij = (SiSj) = J IT dYk P(Xk) sgn(Xi) sgn(Xj) 
k 

(5) 

(6) 

The integrals in Equation 5 can be done analytically, and yield the surprisingly 
simple result: 

(CSS ) .. - _ sin-1 'J (2) [C~.X 1 
'J - 11" JCfix elf . (7) 

Thus, the correlations of the clipped binary variables CSS are related to the corre­
lations of the corresponding Gaussian variables CXX through the nonlinear arcsine 
function. The normalization in the denominator of the arcsine argument reflects the 
fact that the sign function is unchanged by a scale change in the Gaussian variables. 

Although the correlation matrix CSS and the generating correlation matrix cn are 
easily related through Equation 7, they have qualitatively very different properties. 
In general, the correlation matrix CSS will no longer have the low rank structure of 
CXX. As illustrated by the translationally invariant example in the next section, the 
spectrum of CSS may contain a whole continuum of eigenvalues even though cxx 
has only a few nonzero eigenvalues. 

PCA is typically used for dimensionality reduction of real variables; can this model 
be used for compressing the binary outputs Si? Although the output correlations 
CSS no longer display the low rank structure of the generating CXX , a more appropri­
ate measure of data compression is the entropy of the binary output states. Consider 
how many of the 2N possible binary states will be generated by the clipping process. 
The equation Xi = E j WijYj = 0 defines a P - 1 dimensional hyperplane in the 
P-dimensional state space of hidden variables Yj, which are shown as dashed lines 
in Figure 2. These hyperplanes partition the half-space where Si = +1 from the 
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Figure 3: Translationally invariant binary spin distribution with N = 256 units. 
Representative samples from the distribution are illustrated on the left, while the 
eigenvalue spectrum of CSS and CXX are plotted on the right. 

region where Si = -1. Each of the N spin variables will have such a dividing hyper­
plane in this P-dimensional state space, and all of these hyperplanes will generically 
be unique. Thus , the total number of spin configurations Si is determined by the 
number of cells bounded by N dividing hyperplanes in P dimensions. The number 
of such cells is approximately NP for N » P, a well-known result from perceptrons 
[6]. To leading order for large N, the entropy of the binary states generated by this 
process is then given by S = P log N. Thus, the entropy of the spin configurations 
generated by this model is directly proportional to the number of hidden variables 
P . 

How is the topology of the binary spin configurations Si related to the PCA man­
ifold structure of the continuous variables Xi? Each of the generated spin states is 
represented by a polytope cell in the P dimensional vector space of hidden variables. 
Each polytope has at least P + 1 neighboring polytopes which are related to it by a 
single or small number of spin flips. Therefore, although the state space of binary 
spin configurations is discrete, the continuous manifold structure of the underlying 
Gaussian variables in this model is manifested as binary output configurations with 
low entropy that are connected with small Hamming distances . 

Translationally Invariant Example 

In principle, the weights W could be learned by applying maximum likelihood to 
this generative model; however, the resulting learning algorithm involves analyti­
cally intractable multi-dimensional integrals. Alternatively, approximations based 
upon mean field theory or importance sampling could be used to learn the appropri­
ate parameters [7]. However, Equation 7 suggests a simple learning rule that is also 
approximate, but is much more computationally efficient [8]. First, the binary cor­
relation matrix CSS is computed from the data. Then the empirical CSS is mapped 
into the appropriate Gaussian correlation matrix using the nonlinear transforma­
tion: CXX = sin(7l'Css /2). This results in a Gaussian correlation matrix where the 
variances of the individual Xi are fixed at unity. The weights Ware then calculated 
using the conventional PCA algorithm. The correlation matrix cxx is diagonalized, 
and the eigenvectors with the largest eigenvalues are used to form the columns of 
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w to yield the best low rank approximation CXX ~ WWT . Scaling the variables Xi 

will result in a correlation matrix CXX with slightly different eigenvalues but with 
the same rank. 

The utility of this transformation is illustrated by the following simple example. 
Consider the distribution of N = 256 binary spins shown in Figure 3. Half of the 
spins are chosen to be positive, and the location of the positive bump is arbitrary 
under the periodic boundary conditions. Since the distribution is translationally 
invariant, the correlations CIl depend only on the relative distance between spins 
Ii - jl. The eigenvectors are the Fourier modes, and their eigenvalues correspond 
to their overlap with a triangle wave. The eigenvalue spectrum of css is plotted in 
Figure 3 as sorted by their rank. In this particular case, the correlation matrix CSS 
has N /2 positive eigenvalues with a corresponding range of values. 

Now consider the matrix CXX = sin(-lI'Css /2). The eigenvalues of CXX are also 
shown in Figure 3. In contrast to the many different eigenvalues CSS, the spectrum 
of the Gaussian correlation matrix CXX has only two positive eigenvalues, with all 
the rest exactly equal to zero. The corresponding eigenvectors are a cosine and sine 
function. The generative process can thus be understood as a linear combination 
of the two eigenmodes to yield a sine function with arbitary phase. This function 
is then clipped to yield the positive bump seen in the original binary distribution. 

In comparison with the eigenvalues of CSS, the eigenvalue spectrum of CXX makes 
obvious the low rank structure of the generative process. In this case, the original 
binary distribution can be constructed using only P = 2 hidden variables, whereas 
it is not clear from the eigenvalues of CSS what the appropriate number of modes 
is. This illustrates the utility of determining the principal components from the 
calculated Gaussian correlation matrix cxx rather than working directly with the 
observable binary correlation matrix CSS. 

Handwritten Digits Example 

This model was also applied to a more complex data set. A large set of 16 x 16 
black and white images of handwritten twos were taken from the US Post Office 
digit database [9]. The pixel means and pixel correlations were directly computed 
from the images. The generative model needs to be slightly modified to account for 
the non-zero means in the binary outputs. This is accomplished by adding fixed 
biases ~i to the Gaussian variables Xi before clipping: 

Si = sgn(~i + Xi). (8) 

The biases ~i can be related to the means of the binary outputs through the ex-
pression: 

~i = J2CtX erf- 1 (Si). (9) 
This allows the biases to be directly computed from the observed means of the 
binary variables. Unfortunately, with non-zero biases, the relationship between 
the Gaussian correlations CXX and binary correlations CSS is no longer the simple 
expression found in Equation 7. Instead, the correlations are related by the following 
integral equation: 

Given the empirical pixel correlations CSS for the handwritten digits, the integral 
in Equation 10 is numerically solved for each pair of indices to yield the appropriate 
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Figure 4: Eigenvalue spectrum of CSS and CXx for handwritten images of twos. The 
inset shows the P = 16 most significant eigenvectors for cxx arranged by rows. The 
right side of the figure shows a nonlinear morph between two different instances of 
a handwritten two using these eigenvectors. 

Gaussian correlation matrix CXX . The correlation matrices are diagonalized and 
the resulting eigenvalue spectra are shown in Figure 4. The eigenvalues for CXX 
again exhibit a characteristic drop that is steeper than the falloff in the spectrum 
of the binary correlations CSs. The corresponding eigenvectors of CXX with the 16 
largest positive eigenvalues are depicted in the inset of Figure 4. These eigenmodes 
represent common image distortions such as rotations and stretching and appear 
qualitatively similar to those found by the standard PCA algorithm. 

A generative model with weights W corresponding to the P = 16 eigenvectors 
shown in Figure 4 is used to fit the handwritten twos, and the utility of this nonlin­
ear generative model is illustrated in the right side of Figure 4. The top and bottom 
images in the figure are two different examples of a handwritten two from the data 
set, and the generative model is used to morph between the two examples. The hid­
den values Yi for the original images are first determined for the different examples, 
and the intermediate images in the morph are constructed by linearly interpolat­
ing in the vector space of the hidden units. Because of the clipping nonlinearity, 
this induces a nonlinear mapping in the outputs with binary units being flipped in 
a particular order as determined by the generative model. In contrast, morphing 
using conventional PCA would result in a simple linear interpolation between the 
two images, and the intermediate images would not look anything like the original 
binary distribution [10]. 

The correlation matrix CXX also happens to contain some small negative eigen­
values. Even though the binary correlation matrix CSS is positive definite, the 
transformation in Equation 10 does not guarantee that the resulting matrix CXx 
will also be positive definite. The presence of these negative eigenvalues indicates 
a shortcoming of the generative processs for modelling this data. In particular, 
the clipped Gaussian model is unable to capture correlations induced by global 



Learning a Continuous Hidden Variable Model for Binary Data 521 

constraints in the data. As a simple illustration of this shortcoming in the gen­
erative model, consider the binary distribution defined by the probability density: 
P({s}) tX lim.B-+ooexp(-,BLijSiSj). The states in this distribution are defined by 
the constraint that the sum of the binary variables is exactly zero: Li Si = O. Now, 
for N 2: 4, it can be shown that it is impossible to find a Gaussian distribution 
whose visible binary variables match the negative correlations induced by this sum 
constraint. 

These examples illustrate the value of using the clipped generative model to learn 
the correlation matrix of the underlying Gaussian variables rather than using the 
correlations of the outputs directly. The clipping nonlinearity is convenient because 
the relationship between the hidden variables and the output variables is particu­
larly easy to understand. The learning algorithm differs from other nonlinear PCA 
models and autoencoders because the inverse mapping function need not be explic­
itly learned [11, 12]. Instead, the correlation matrix is directly transformed from the 
observable variables to the underlying Gaussian variables. The correlation matrix 
is then diagonalized to determine the appropriate feedforward weights. This results 
in a extremely efficient training procedure that is directly analogous to PCA for 
continuous variables. 
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US-Israel Binational Science Foundation. We also thank H. S. Seung for helpful 
discussions. 
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Abstract 

As already known, the expected return of a policy in Markov Deci­
sion Problems is not always the most suitable optimality criterion. For 
many applications control strategies have to meet various constraints like 
avoiding very bad states (risk-avoiding) or generating high profit within 
a short time (risk-seeking) although this might probably cause significant 
costs. We propose a modified Q-Iearning algorithm which uses a single 
continuous parameter K E [-1, 1] to determine in which sense the re­
sulting policy is optimal. For K = 0, the policy is optimal with respect 
to the usual expected return criterion, while K -+ 1 generates a solution 
which is optimal in worst case. Analogous, the closer K is to -1 the more 
risk seeking the policy becomes. In contrast to other related approaches 
in the field of MDPs we do not have to transform the cost model or to 
increase the state space in order to take risk into account. Our new ap­
proach is evaluated by computing optimal investment strategies for an 
artificial stock market. 

1 WHY IT SOMETIMES PAYS TO ACT CAUTIOUSLY 

Reinforcement learning (RL) deals with the computation of favorable control policies in 
sequential decision task. Its theoretical framework of Markov Decision Problems (MDPs) 
evaluates and compares policies by their expected (sometimes discounted or averaged) sum 
of the immediate returns or costs per time step (Bertsekas & Tsitsiklis, 1996). But there are 
numerous applications which require a more sophisticated control scheme: e. g. a policy 
should take into account that bad outcomes or states may be possible even if they are very 
rare because they are so disastrous, that they should be certainly avoided. 

An obvious example is the field of finance where the main question is how to invest re­
sources among various opportunities (e.g. assets like stocks, bonds, etc.) to achieve re­
markable returns while simultaneously controlling the risk exposure of the investments 
due to changing markets or economic conditions. Many traders try to achieve this by a 
Markovitz-like portfolio management which distributes capital according to return and risk 
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estimates of the assets. A new approach using reinforcement learning techniques which 
additionally integrates trading costs and other market imperfections has been proposed in 
Neuneier, 1998. Here, these algorithms are naturally extended such that an explicit risk 
control is now possible. The investor can decide how much risk shelhe is willing to accept 
and then compute an optimal risk-averse investment strategy. Similar trade-off scenarios 
can be formulated in robotics, traffic control and further application areas. 

The fact that the popular expected value criterion is not always suitable has been already 
known in the field of AI (Koenig & Simmons, 1994), control theory and reinforcement 
learning (Heger, 1994 and Szepesvari, 1997). Several techniques have been proposed to 
handle this problem. The most obvious way is to transform the sum of returns "Et rt using 
an appropriate utility function U which reflects the desired properties of the solution. Un­
fortunately, interesting nonlinear utility functions incorporating the variance of the return, 
such as U("Et rt) = "Et rt - >'("Et rt - E("Et rt))2, lead to non-Markovian decision 
problems. The popular class of exponential utility functions U("Et rt) = exp(>'"Et rt) 
preserves the Markov property but requires time dependent policies even for discounted 
infinite horizon MDPs. Furthermore, it is not possible to formulate a corresponding model­
free learning algorithm. A further alternative changes the state space model by including 
past returns as an additional state element at the cost of a higher dimensionality of the 
MDP. Furthermore, it is not always clear in which way the states should be augmented. 
One may also transform the cost model, i. e. by punishing large losses stronger than mi­
nor costs. While requiring a significant amount of prior knowledge, this also increases the 
complexity of the MDP. 

In contrast to these approaches we modify the popular Q-learning algorithm by introducing 
a control parameter which determines in which sense the resulting policy is optimal. Intu­
itively and loosely speaking, our algorithm simulates the learning behavior of an optimistic 
(pessimistic) person by overweighting (underweighting) experiences which are more pos­
itive (negative) than expected. This main idea will be made more precise in section 2 and 
mathematically thoroughly analyzed in section 3. Using artificial data, we demonstrate 
some properties of the new algorithm by constructing an optimal risk-avoiding investment 
strategy (section 4). 

2 RISK SENSITIVE Q-LEARNING 

For brevity we restrict ourselves to the subclass of infinite horizon discounted Markov deci­
sion problems (MDP). Furthermore, we assume the immediate rewards being deterministic 
functions of the current state and control action. Let S = {I, ... , n} be the finite state 
space and U be the finite action space. Transition probabilities and immediate rewards are 
denoted by Pij(U) and 9i(U), respectively. 'Y denotes the discount factor. Let II be the set 
of all deterministic policies mapping states to control actions. 

A commonly used objective is to learn a policy 1r that 

maximizes ( Q' (i, u) '~g,(u) + E {t, 'Y'g" (,,(i,)) } ) (1) 

quantifying the expected reward if one executes control action U in state i and follows 
the policy 1r thereafter. It is a well-known result that the optimal Q-values Q*(i,u) := 

maX7rETIQ7r (i, u) satisfy the following optimality equation 

Q*(i,u) = 9i(U) + 'Y ~ Pij(U) maxQ*(j,u') Vi E S,u E U. (2) 
L...J u'EU 
jES 

Any policy 1f with 1f(i) = argmaxuEU Q* (i, u) is optimal with respect to the expected 
reward criterion. 
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The Q-function Q1r averages over the outcome of all possible trajectories (series of states) 
of the Markov process generated by following the policy 1r. However, the outcome of a 
specific realization of the Markov process may deviate significantly from this mean value. 
The expected reward criterion does not consider any risk, although the cases where the 
discounted reward falls considerably below the mean value is of a living interest for many 
applications. Therefore, depending on the application at hand the expected reward ap­
proach is not always appropriate. Alternatively, Heger (1994) and Littman & Szepesvari 
(1996) present a performance criterion that exclusively focuses on risk avoiding policies: 

maximize (Q< (i, u) ,= 9i(U) + "i~f {t, 7' 9;,(1T(i,»}) . (3) 
p(ll, t 2, ... »o -

The Q-function Q1r (i, u) denotes the worst possible outcome if one executes control action 
u in state i and follows the policy 1r thereafter. The corresponding optimality equation for 
Q*(i, u) := max1r En Q1r (i, u) is given by 

Q*(i,u) = 9i(U) + / min maxQ*(j,u') . (4) 
- )ES u'EU-

Pij(U»O 

Any policy 1[ satisfying 1[( i) = arg maxuE U Q* (i, u) is optimal with respect to this mini­
mal reward criterion. In most real world applications this approach is too restrictive because 
it takes very rare events (that in practice never happen) fully into account. This usually leads 
to policies with a lower average performance than the application requires. An investment 
manager, for instance, which acts with respect to this very pessimistic objective function 
will not invest at all. 

To handle the trade-off between a sufficient average performance and a risk avoiding (risk 
seeking) behavior, we propose a family of new optimality equations parameterized by a 
meta-parameter /'i, (-1 < /'i, < 1): 

o = ~ Pij(U)X" (9i(U) + / max Q,.(j, u') - Q,.(i, u)) Vi E S, u E U (5) 
~ u'EU 
jES 

where X,. (x) := (1 - /'i, sign(x) )x. (In the next section we will show that a unique solution 
Q,. of the above equation (5) exists.) Obviously, for /'i, = 0 we recover equation (2), 
the optimality equation for the expected reward criterion. If we choose /'i, to be positive 
(0 < /'i, < 1) then we overweight negative temporal differences 

9i(U) + / max Q,.(j, u') - Q,.(i, u) < 0 (6) 
u'EU 

with respect to positive ones. Loosely speaking, we overweight transitions to states where 
the future return is lower than the average one. On the other hand, we underweight transi­
tions to states that promise a higher return than in the average. Thus, an agent that behaves 
according to the policy 1r,.(i) := argmaxuEU Q,.(i,u) is risk avoiding if /'i, > O. In the 
limit /'i, -+ 1 the policy 1r,. approaches the optimal worst-case policy 1[, as we will show 
in the following section. (To get an intuition about this, the reader may easily check that 
the optimal worst-case Q-value Q* fulfills the modified optimality equation (5) for /'i, = 1.) 
Similarly, the policy 1r,. becomesrisk seeking if we choose /'i, to be negative. 

It is straightforward to formulate a risk sensitive Q-Iearning algorithm that bases on the 
modified optimality equation (5). Let Q,.(i, u; w) be a parametric approximation of the 
Q-function Q,.(i,u). The states and actions encountered at time step k during simulation 
are denoted by ik and Uk respectively. At each time step apply the following update rule: 

d(k) 9ik (Uk) + / max Q,.(ik+l, u'; w(k)) - Q,.(ik, Uk; w(k)), 
u'EU 

w(k+1) W(k) + a~k) X"(d(k))\7 wQ,.(ik, Uk; w(k)), (7) 
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where o:~k) denotes a stepsize sequence. The following section analyzes the properties of 
the new optimality equations and the corresponding Q-Iearning algorithm. 

3 PROPERTIES OF THE RISK SENSITIVE Q-FUNCTION 

Due to space limitations we are not able to give detailed proofs of our results. Instead, we 
focus on interpreting their practical consequences. The proofs will be published elsewhere. 

Before formulating the mathematical results, we introduce some notation to make the ex­
position more concise. Using an arbitrary stepsize 0 < 0: < 1, we define the value iteration 
operator corresponding to our modified optimality equation (5) as 

Ta , ~[Q](i, u) := Q(i, u) + 0: L Pij(U)X~ (9i(U) +, ~~ Q(j, u') - Q(i, u)). (8) 
jES 

The operator Ta,~ acts on the space of Q-functions. For every Q-function Q and every 
state-action pair (i, u) we define N~[Q](i, u) to be the set of all successor states j for 
which maxu'EU Q(j, u') attains its minimum: 

N~[Q](i,u):= {j E Slpij(u) > o and maxQ(j,u') = min maxQV,u')}. (9) 
u'EU j'es u'EU 

Pij,(U) >0 

Let p~[Q]( i, u) := 2: jE N" [Q](i,u) Pij (u) be the probability of transitions to such successor 
states. 

We have the following lemma ensuring the contraction property of Ta,~. 

Lemma 1 (Contraction Property) Let IQI = maxiES,uEU Q(i, u) and 0 < 0: < 1,0 < 
, < 1. Then 

ITa,~[Qd - Ta,~[Q2ll ::; (1 - 0:(1 -11>:1)(1 - ,)) IQ1 - Q21 VQ1, Q2. (10) 

The operator Ta,~ is contracting, because 0 < (1 - 0:(1 - 11>:1)(1 - ,)) < 1. 

The lemma has several important consequences. 

1. The risk sensitive optimality equation (5), i. e. Ta,~[Ql = Q has a unique solution Q~ 
for all -1 < I>: < 1. 

2. The value iteration procedure Qnew := Ta,~[Ql converges towards Q~. 

3. The existing convergence results for traditional Q-Iearning (Bertsekas & Tsitsiklis 
1997, Tsitsiklis & Van Roy 1997) remain also valid in the risk sensitive case I>: i- O. 
Particularly, risk sensitive Q-learning (7) converges with probability one in the case 
of lookup table representations as well as in the case of optimal stopping problems 
combined with linear representations. 

4. The speed of convergence for both, risk sensitive value iteration and Q-Iearning be­
comes worse if 11>:1 -7 1. We can remedy this to some extent if we increase the stepsize 
0: appropriately. 

Let 7r ~ be a greedy policy with respect to the unique solution Q ~ of our modified optimality 
equation; that is 7r~(i) = argmaxuEuQ~(i,u). The following theorem examines the 
performance of 7r ~ for the risk avoiding case I>: 2: O. It gives us a feeling about the expected 
outcome Q'Ir" and the worst possible outcome Q'Ir" of policy 7r~ for different values of 1>:. 
The theorem clarifies the limiting behavior of 7r ~ if I>: -7 1. 
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Theorem 2 Let 0 ~ /\, < 1. The following inequalities hold componentwise, i. e. for each 
pair (i,u) E S x U. 

o ~ Q* - Qrr" ~ 2/\'-1' (Q* - Q*) (11) -, -

o ~ PK[QK](Q* - Qrr,,) ~ (1- /\,) -'-(Q* - Q*) (12) 
- - 2/\, 1-, -

Moreover, lim 0"" = Q* and lim Qrr" = Q*. 
K~O K~l--

The difference Q * - Q* between the optimal expected reward and the optimal worst case 
reward is crucial in theabove inequalities. It measures the amount of risk being inherent in 
our MDP at hand. Besides the value of /\' , this quantity essentially influences the difference 
between the performance of the policy 7r K and the optimal performance with respect to 
both, the expected reward and the worst case criterion. The second inequality (12) states 
that the performance of policy 7r K in the worst case sense tends to the optimal worst case 
performance if /\, -+ 1. The "speed of convergence" is influenced by the quantity PK [Q K], 
i. e. the probability that a worst case transition really occurs. (Note that PK [Q KJ is bounded 
from below.) A higher probability PK [Q KJ of worst case transitions implies a stronger risk 
avoiding attitude of the policy 7r K. 

4 EXPERIMENTS: RISK-AVERSE INVESTMENT DECISIONS 

Our algorithm is now tested on the task of constructing an optimal investment policy for an 
artificial stock price analogous to the empirical analysis in Neuneier, 1998. The task, illus­
trated as a MDP in fig. 1, is to decide at each time step (e. g. each day or after each mayor 
event on the market) whether to buy the stock and therefore speculating on increasing stock 
prices or to keep the capital in cash which avoids potential losses due to decreasing stock 
prices. 

disturbancies 

financial market 

investments return 

investor 

rates, prices 

Figure 1. The Markov Decision Problem: 

Xt = ($t, Kt)' 

at = J-L(xt} 
p(xt+llxt} 
r(xt,at,$t+d 

state: market $t 
and portfolio K t 

policy J-L, actions 
transition probabilities 
return function 

2.-----~----__ ----__ ----__ ----__ --__. 
' .9 
1 . B 

.~: : : 
i '.5 

1. , 

Figure 2. A realization of the ar­
tificial stock price for 300 time 
steps. It is obvious that the 
price follows an increasing trend 
but with higher values a sud­
den drop to low values becomes 
more and more probable. 

It is assumed, that the investor is not able to influence the market by the investment de­
cisions. This leads to a MDP with some of the state elements being uncontrollable and 
results in two computationally import implications: first, one can simulate the investments 
by historical data without investing (and potentially losing) real money. Second, one can 
formulate a very efficient (memory saving) and more robust Q-Ieaming algorithms. Due to 
space restriction we skip a detailed description of these algorithms and refer the interested 
reader to Neuneier, 1998. 
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The artificial stock price is in the range of [1, 2]. The transition probabilities are chosen 
such that the stock market simulates a situation where the price follows an increasing trend 
but with higher values a drop to very low values becomes more and more probable (fig. 2). 

The state vector consists of the current stock price and the current investment, i. e. the 
amount of money invested in stocks or cash. Changing the investment from cash to stocks 
results in some transaction costs consisting of variable and fixed terms. These costs are 
essential to define the investment problem as a MDP because they couple the actions made 
at different time steps. Otherwise we could solve the problem by a pure prediction of the 
next stock price. The function which quantifies the immediate return for each time step is 
defined as follows: if the capital is invested in cash, then there is nothing to earn even if 
the stock price increases, if the investor has bought stocks the return is equal the relative 
change of the stock price weighted by the invested amount of capital minus the transaction 
costs which apply if one changed from cash to stocks. 

o 
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• tode prtce S 
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It .. o.s 
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capital 1.5 

R'1 stclCln 1 _todc price • 

Figure 3. Left: Risk neu­
tral policy, K, = O. Right: 
A small bias of K, = 0.3 
against risk changes the po­
licy if one is not invested 
(transaction costs apply in 
this case) . 

Figure 4. Left: K, = 0.5 
yields a stronger risk averse 
attitude. Right: With K, = 
0.8 the policy becomes also 
more cautious if already in­
vested in stocks. 

Figure 5. Left: K, = 0.9 
leads to a policy which in­
vests in stocks in only 5 
cases. Right: The worst 
case solution never invests 
because there is always a 
positive probability for de­
creasing stock prices. 

As a reinforcement learning method, Q-Iearning has to interact with the environment (here 
the stock market) to learn optimal investment behavior. Thus, a training set of 2000 data 
points is generated. The training phase is divided into epochs which consists of as many 
trials as data in the training set exist. At every trial the algorithm selects randomly a stock 
price from the data set, chooses a random investment state and updates the tabulated Q­
values according to the procedure given in Neuneier, 1998. The only difference of our new 
risk averse Q-Iearning is that negative experiences, i. e. smaller returns than in the mean, 
are overweighted in comparison to positive experiences using the /\,-factor of eq. (7). Using 
different /\, values from 0 (recovering the original Q-Iearning procedure) to 1 (leading to 
worst case Q-Iearning) we plot the resulting policies as mappings from the state space to 
control actions in figures 3 to 5. Obviously, with increasing /\, the investor acts more and 
more cautiously because there are less states associated with an investment decision for 
stocks. In the extreme case of /\, = 1, there is no stock investment at all in order to avoid 
any loss. The policy is not useful in practice. This supports our introductory comments that 
worst case Q-learning is not appropriate in many tasks. 
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Figure 6. The quantiles of the dis­
tributions of the discounted sum of 
returns for It = 0.2 (0) and It = 0.4 
(+) are plotted against the quan­
tiles for the classical risk neutral 
approach It = O. The distributions 
only differ significantly for nega­
tive accumulated returns (left tail of 
the distributions). 

For further analysis, we specify a risky start state io for which a sudden drop of the stock 
price in the near future is very probable. Starting at io we compute the cumulated dis­
counted rewards of 10000 different trajectories following the policies 11"0, 11"0.2 and 11"0.4 

which have been generated using K, = 0 (risk neutral), K, = 0.2 and K, = 0.4. The resulting 
three data sets are compared using a quantile-quantile plot whose purpose is to determine 
whether the samples come from the same distribution type. If they do so, the plot will be 
linear. Fig. 6 clearly shows that for higher K,-values the left tail of the distribution (neg­
ative returns) bends up indicating a fewer number of losses. On the other hand there is 
no significant difference for positive quantiles. In contrast to naive utility functions which 
penalizes high variance in general, our risk sensitive Q-Iearning asymmetrically reduces 
the probability for losses which may be more suitable for many applications. 

5 CONCLUSION 

We have formulated a new Q-Iearning algorithm which can be continuously tuned towards 
risk seeking or risk avoiding policies. Thus, it is possible to construct control strategies 
which are more suitable for the problem at hand by only small modifications of Q-Iearning 
algorithm. The advantage of our approch in comparison to already known solutions is, that 
we have neither to change the cost nor the state model. We can prove that our algorithm 
converges under the usual assumptions. Future work will focus on the connections between 
our approach and the utility theoretic point of view. 
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