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Abstract 

We discuss the application of TAP mean field methods known from 
the Statistical Mechanics of disordered systems to Bayesian classifi­
cation models with Gaussian processes. In contrast to previous ap­
proaches, no knowledge about the distribution of inputs is needed. 
Simulation results for the Sonar data set are given. 

1 Modeling with Gaussian Processes 

Bayesian models which are based on Gaussian prior distributions on function spaces 
are promising non-parametric statistical tools. They have been recently introduced 
into the Neural Computation community (Neal 1996, Williams & Rasmussen 1996, 
Mackay 1997). To give their basic definition, we assume that the likelihood of the 
output or target variable T for a given input s E RN can be written in the form 
p(Tlh(s)) where h : RN --+ R is a priori assumed to be a Gaussian random field. 
If we assume fields with zero prior mean, the statistics of h is entirely defined by 
the second order correlations C(s, S') == E[h(s)h(S')], where E denotes expectations 
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with respect to the prior. Interesting examples are 

C(s, s') (1) 

C(s, s') (2) 

The choice (1) can be motivated as a limit of a two-layered neural network with 
infinitely many hidden units with factorizable input-hidden weight priors (Williams 
1997). Wi are hyperparameters determining the relevant prior lengthscales of h(s). 
The simplest choice C(s, s') = 2::i WiSiS~ corresponds to a single layer percept ron 
with independent Gaussian weight priors. 

In this Bayesian framework, one can make predictions on a novel input s after 
having received a set Dm of m training examples (TJ.1., sJ.1.), J.L = 1, ... , m by using 
the posterior distribution of the field at the test point s which is given by 

p(h(s)IDm) = J p(h(s)l{hV}) p({hV}IDm) II dhJ.1.. 
J.1. 

(3) 

p(h(s)1 {hV}) is a conditional Gaussian distribution and 

p({hV}IDm) = ~P({hV}) II p(TJ.1.IhJ.1.). (4) 
J.1. 

is the posterior distribution of the field variables at the training points. Z is a 
normalizing partition function and 

(5) 

is the prior distribution of the fields at the training points. Here, we have introduced 
the abbreviations hJ.1. = h(sJ.1.) and CJ.1.V == C(sJ.1., SV). 

The major technical problem of this approach comes from the difficulty in per­
forming the high dimensional integrations. Non-Gaussian likelihoods can be only 
treated by approximations, where e.g. Monte Carlo sampling (Neal 1997), Laplace 
integration (Barber & Williams 1997) or bounds on the likelihood (Gibbs & Mackay 
1997) have been used so far. In this paper, we introduce a further approach, which 
is based on a mean field method known in the Statistical Physics of disordered 
systems (Mezard, Parisi & Virasoro 1987). 

We specialize on the case of a binary classification problem, where a binary class 
label T = ±1 must be predicted using a training set corrupted by i.i.d label noise. 
The likelihood for this problem is taken as 

where I\, is the probability that the true classification label is corrupted, i. e. flipped 
and the step function, 0(x) is defined as 0(x) = 1 for x > 0 and 0 otherwise. For 
such a case, we expect that (by the non-smoothness of the model), e.g. Laplace's 
method and the bounds introduced in (Gibbs & Mackay 1997) are not directly 
applicable. 
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2 Exact posterior averages 

In order to make a prediction on an input s, ideally the label with maximum poste­
rior probability should be chosen, i.e. TBayes = argmaxr p( TIDm), where the predic­
tive probability is given by P(TIDm) = J dhp(Tlh) p(hIDm). For the binary case the 
Bayes classifier becomes TBayes = sign(signh(s)), where we throughout the paper let 
brackets ( ... ) denote posterior averages. Here, we use a somewhat simpler approach 
by using the prediction 

T = sign((h(s))) . 

This would reduce to the ideal prediction, when the posterior distribution of h(s) 
is symmetric around its mean (h(s)). The goal of our mean field approach will be 
to provide a set of equations for approximately determining (h( s)) . The starting 
point of our analysis is the partition function 

Z = J II dX;:ihJ.L IIp(TJ.LlhJ.L)e~ LI' ,u cI'UxI'X U- L I' hl'xl' , (6) 

J.L J.L 

where the new auxiliary variables x/l (integrated along the imaginary axis) have 
been introduced in order to get rid of C- l in (5). 

It is not hard to show from (6) that the posterior averages of the fields at the m 
training inputs and at a new test point s are given by 

(7) 
l/ l/ 

We have thus reduced our problem to the calculation of the "microscopic orderpa­
rameters" (x/l). 1 Averages in Statistical Physics can be calculated from derivatives 
of -In Z with respect to small external fields, which are then set to zero, An 
equivalent formulation uses the Legendre transform of -In Z as a function of the 
expectations , which in our case is given by 

G( {(XJ.L) , ((XJ.L)2)}) = -In Z(, /l, A) + L(xJ.L)'yJ.L + ~ L AJ.L((XJ.L)2) . (8) 
J.L J.L 

with 

Z( bJ.L, A/l}) = J II dX;:ihJ.L IIp(TJ.LlhJ.L)e~ LI',JAI'Ol'u+Cl' u)x l'x u+ LI' xl'(-yl' - hl'). (9) 

/l J.L 

The additional averages ((XJ.L)2) have been introduced, because the dynamical vari­
ables xJ.L (unlike Ising spins) do not have fixed length. The external fields ,J.L , AJ.L 
must be eliminated from t~ = t; = 0 and the true expectation values of xJ.L and 

( J.L)2 th h' h t' f 8G - 8G - 0 x are ose w IC sa IS y 8 « xl' )2) - 8(xl' ) - , 

3 Naive mean field theory 

So far, this description does not give anything new. Usually G cannot be calculated 
exactly for the non-Gaussian likelihood models of interest. Nevertheless, based on 
mean field theory (MFT) it is possible to guess an approximate form for G. 

1 Although the integrations are over the imaginary axis, these expectations come out 
positive. This is due to the fact that the integration "measure" is complex as well. 



312 M Opper and 0. Winther 

Mean field methods have found interesting applications in Neural Computing within 
the framework of ensemble learning, where the the exact posterior distribution is 
approximated by a simpler one using product distributions in a variational treat­
ment. Such a "standard" mean field method for the posterior of the hf.L (for the 
case of Gaussian process classification) is in preparation and will be discussed some­
where else. In this paper, we suggest a different route, which introduces nontrivial 
corrections to a simple or "naive" MFT for the variables xl-'. Besides the variational 
method (which would be purely formal because the distribution of the xf.L is complex 
and does not define a probability), there are other ways to define the simple MFT. 
E.g., by truncating a perturbation expansion with respect to the "interactions" Cf.LV 
in G after the first order (Plefka 1982). These approaches yield the result 

G ~ Gnaive = Go - ~ :LCI-'f.L((XI-')2) - ~ :L CI-'v(xl-')(XV). (10) 
I-' 1-' , v, wl-f.L 

Go is the contribution to G for a model without any interactions i.e. when CI-'v = 0 
in (9), i.e. it is the Legendre transform of 

- In Zo = l: In [~+ (1 - 2~) <I> (TI-' ;;)] , 
I-' 

where <I>(z) = J~oo .:}f;e-t2 / 2 is an error function. For simple models in Statistical 
Physics, where all interactions CI-'V are positive and equal, it is easy to show that 
Gnaive will become exact in the limit of an infinite number of variables xl-'. Hence, 
for systems with a large number of nonzero interactions having the same orders of 
magnitude, one may expect that the approximation is not too bad. 

4 The TAP approach 

Nevertheless, when the interactions Cf.LV can be both positive and negative (as one 
would expect e.g. when inputs have zero mean), even in the thermodynamic limit 
and for nice distributions of inputs, an additional contribution tlG must be added 
to the "naive" mean field theory (10). Such a correction (often called an Onsager 
reaction term) has been introduced for a spin glass model by (Thouless, Anderson 
& Palmer 1977) (TAP). It was later applied to the statistical mechanics of single 
layer perceptrons by (Mezard 1989) and then generalized to the Bayesian framework 
by (Opper & Winther 1996, 1997). For an application to multilayer networks, see 
(Wong 1995). In the thermodynamic limit of infinitely large dimension of the input 
space, and for nice input distributions, the results can be shown coincide with the 
results of the replica framework. The drawback of the previous derivations of the 
TAP MFT for neural networks was the fact that special assumptions on the input 
distribution had been made and certain fluctuating terms have been replaced by 
their averages over the distribution of random data, which in practice would not be 
available. In this paper, we will use the approach of (Parisi & Potters 1995), which 
allows to circumvent this problem. They concluded (applied to the case of a spin 
model with random interactions of a specific type), that the functional form of tlG 
should not depend on the type of the "single particle" contribution Go. Hence, one 
may use any model in Go, for which G can be calculated exactly (e.g. the Gaussian 
regression model) and subtract the naive mean field contribution to obtain the 
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desired I:1G. For the sake of simplicity, we have chosen the even simpler model 
p( TI-'l hi-') '"" 6 (hi-') without changing the final result. A lengthy but straightforward 
calculation for this problem leads to the result 

(11) 

with RI-' == ((xl-')2) - (Xi-')2. The Ai-' must be eliminated using t j( = 0, which leads 
I' 

to the equation 
(12) 

Note, that with this choice, the TAP mean field theory becomes exact for Gaussian 
likelihoods , i. e. for standard regression problems. 

Finally, setting the derivatives of GT AP = Gnaive + I:1G with respect to the 4 
variables (xl-'), ((xl-')2) ,rl-" AI-' equal to zero, we obtain the equat ions 

(13) 
v 

where D(z ) = e- z 2 /2 /..,j2; is the Gaussian measure. These eqs . have to be solved 
numerically together with (12). In contrast, for the naive MFT, the simpler result 
AI-' = C 1-'1-' is found. 

5 Simulations 

Solving the nonlinear system of equations (12,13) by iteration turns out to be quite 
straightforward. For some data sets to get convergence, one has to add a diagonal 
term v to the covariance matrix C: Cij -+ Cij +6ijV. It may be shown that this term 
corresponds to learning with Gaussian noise (with variance v) added the Gaussian 
random field. 

Here, we present simulation results for a single data set, the Sonar - Mines versus 
Rocks using the same training/test set split as in the original study by (Gorman & 
Sejnowski 1988). The input data were pre-processed by linear rescaling such that 
over the training set each input variable has zero mean and unit variance. In some 
cases the mean field equations failed to converge using the raw data. 

A further important feature of TAP MFT is the fact that the method also gives 
an approximate leave-one-out estimator for the generalization error , C]oo expressed 
in terms of the solution to the mean field equations (see (Opper & Winther 1996, 
1997) for more details) . It is also possible to derive a leave-one-out estimator for 
the naive MFT (Opper & Winther to be published). 

Since we so far haven't dealt with the problem of automatically estimating the 
hyperparameters, their number was drastically reduced by setting Wi = (TiN in the 
covariances (1) and (2). The remaining hyperparameters, a2 , K, and v were chosen 
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Table 1: The result for the Sonar data. 

Algorithm Covariance Function €test 
€exact 

100 €Joo 

TAP Mean Field (1) 0.183 0.260 0.260 
(2) 0.077 0.212 0.212 

Naive Mean Field (1) 0.154 0.269 0.269 
(2) 0.077 0.221 0.221 

Back-Prop Simple Percept ron 0.269(±0.048) 
Best 21ayer - 12 Hidden 0.096(±0.018) 

as to minimize €Ioo . It turned out that the lowest €Ioo was found from modeling 
without noise: K, = v = O. 

The simulation results are shown in table 1. The comparisons for back-propagation 
is taken from (Gorman & Sejnowski 1988). The solution found by the algorithm 
turned out to be unique, i.e. different order presentation of the examples and dif­
ferent initial values for the (XIL) converged to the same solution. 

In table 1, we have also compared the estimate given by the algorithm with the 
exact leave-one-out estimate €i~~ct obtained by going through the training set and 
keeping an example out for testing and running the mean field algorithm on the 
rest. The estimate and exact value are in complete agreement. Comparing with 
the test error we see that the training set is 'hard' and the test set is 'easy'. The 
small difference for test error between the naive and full mean field algorithms also 
indicate that the mean field scheme is quite robust with respect to choice of AIL ' 

6 Discussion 

More work has to be done to make the TAP approach a practical tool for Bayesian 
modeling. One has to find better methods for solving the equations. A conversion 
into a direct minimization problem for a free energy maybe helpful. To achieve this, 
one may probably work with the real field variables hJ.l. instead of the imaginary XIL . 
A further problem is the determination of the hyperparameters of the covariance 
functions. Two ways seem to be interesting here. One may use the approximate 
free energy G, which is essentially the negative logarithm of the Bayesian evidence 
to estimate the most probable values of the hyperparameters. However, an estimate 
on the errors made in the TAP approach would be necessary. Second, one may use 
the built-in leave-one-out estimate to estimate the generalization error. Again an 
estimate on the validity of the approximation is necessary. It will further be inter­
esting to apply our way of deriving the TAP equations to other models (Boltzmann 
machines, belief nets, combinatorial optimization problems), for which standard 
mean field theories have been applied successfully. 
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