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Abstract 

In this paper we describe the architecture, implementation and experi­
mental results for an Intracardiac Electrogram (ICEG) classification and 
compression chip. The chip processes and vector-quantises 30 dimen­
sional analogue vectors while consuming a maximum of 2.5 J-tW power 
for a heart rate of 60 beats per minute (1 vector per second) from a 3.3 V 
supply. This represents a significant advance on previous work which 
achieved ultra low power supervised morphology classification since the 
template matching scheme used in this chip enables unsupervised blind 
classification of abnonnal rhythms and the computational support for low 
bit rate data compression. The adaptive template matching scheme used 
is tolerant to amplitude variations, and inter- and intra-sample time shifts. 

1 INTRODUCTION 

Implantable cardioverter defibrillators (ICDs) are devices used to monitor the electrical 
activity of the heart muscle and to apply appropriate levels of electrical stimulation if ab­
nonnal conditions are detected. Despite the considerable success of ICDs they suffer from 
a number of limitations including an inability to detect and treat some abnonnal heart 
rhythms and limited data recording capabilities. 

We have previously shown that micropower analogue Multi-Layer Perceptron (MLP) neu­
ral networks can be trained to separate such arrhythmia [4]. However, MLPs are best suited 
to learning the boundary between classes whereas a vector quantization scheme allows a 
measure of the probability density of the morphological types to be estimated. 

Many analogue vector quantiser (VQ) chips have been reported in the literature. For ex­
ample, a 16x256 500 kHz 50 mW 2 J-tm CMOS vector AID converter [10] and a 16 x 16 
300 kHz 0.7 mW 2 J-tm CMOS analogue VQ [1]. These correspond to an energy per match 



672 R. J. Coggins, R. J. W. Wang and M. A. Jabri 

per dimension of 24 pI and 9 pI respectively. The integrated circuit (lC) described in 
this paper is distinguished from these approaches in that it is specifically targeted for the 
low power, low bandwidth application of ICEG classification and compression. Our chip 
achieves vector matching (without the winner take all function) to 7 bit 30 dimensional 
vectors with three coefficient linear prediction, at an energy consumption of 15 pI per tem­
plate per dimension using a 1.2 pm CMOS process. Although this figure is greater than 
that for [1] it should be noted that in [1] the mean absolute error metric is used rather than 
the squared Euclidean distance and no provision is provided for linear transformation of 
the incoming analogue vector. 

2 ADAPTIVE DATA COMPRESSION 

Recording of ICEGs in ICDs is currently very limited due to the amount of memory avail­
able and the power/area cost of implementing all but the simplest compression techniques. 
Micropower template matching however, enables large amounts of the signal to be encoded 
as template indices plus amplitude parameters. Effective compression ofthe ICEG requires 
adaptation to the short term non-stationary behaviour of the ICEG [2] . In particular, short 
term amplitude variations, lag variation, phase variation and ectopic beats (which origi­
nate from the ventricles of the heart and have differing morphology) reduce the achievable 
compression. The impact of ectopic beats can be reduced by increasing the number of 
templates. This can often be achieved without increasing the code book search complexity 
by using associated timing features. The amplitude and shift variations require short term 
adaptation of the template matching in order to minimise the residual error and hence raise 
the compression ratio at fixed distortion. 

2.1 Amplitude and Shift Invariant Matching 

In order to facilitate analogue implementation, a backward prediction procedure is used 
rather than the usual forward prediction [8]. This approach allows the incoming analogue 
template to be manipulated in the analogue domain for amplitude and shift invariance pur­
poses. Consider the long term backward prediction problem described by, 

() -() b ( ) b {x(n + a + 1) - x(n + a - I)} 
rb n = x n - OX n + a-I 2 (1) 

where rb (n) denotes the backward residuals, x is a template which is a function of previous 
beats, x( a) is the sampled ICEG signal, a the time index, n is the template index and bo and 
bl are the amplitude and phase coefficients respectively. bo scales the current beat to match 
the template and hence is an amplitude term. b1 scales the central difference of the current 
beat and is a function of the amplitude and phase corrections required to minimise the 
residuals. To see why this is a phase term consider the Taylor expansion of Ax(t + ¢) to 
the first derivative term around t, 

Ax(t + ¢) = Ax(t) + A¢x' (t) (2) 

where ¢ is a small phase shift of x(t) and A is the amplitude factor. When ¢ is due to 
sampling jitter then, -t :::; ¢ :::; t, where T is the sampling period. Provided that x(t) is 
sampled according to the Nyquist criterion, ¢ is sufficiently small for the first derivative 
term to adequately account for the sampling jitter. Hence, bi accounts for the residual error 
remaining after optimisation of the integer a. a is approximately determined by the beat 
detector of the ICD which attempts to detect the fiducial point of heart beats using filters 
and comparators. bo and b1 can be determined by minimising the squared error between 
the current signal window and the previously recorded template which in this case has a 
closed form solution in terms of correlation coefficients. However, in Section 3 we present 
an alternative iterative procedure suited to low-power analogue implementations. 
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3 SYSTEM ARCHITECTURE & IMPLEMENTATION 
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Figure I: Left: Block diagram of the adaptive linear transfonn VQ chip. Middle: Floorplan 
of the chip. Right: Photomicrograph of the chip. 

The ICEG is first high pass filtered to remove the DC and then is bandpass filtered to 
prevent aliasing and enhance the high frequency component for beat detection. (This is 
the filtering approach already existing in an ICD and therefore not implemented by us). 
This then feeds the discrete time analogue delay line, which is continuously sampling the 
signal at 250 Hz. The analogue samples are then transfonned by a two layer network. The 
first layer implements the linear prediction by adjusting the amplitude bo and the phase 
of the analogue vector. Note that the phase consists of two components, the coarse part 
a corresponding to sample lags and the fine part b1 corresponding to intra-sample lags. The 
second layer calculates the distance between the linearly predicted vector and the template 
wen) to be matched. A comparator is provided so that a match to within a given threshold 
may be detected. 

3.1 Chip Architecture 

Input to the IC is via a single analogue channel which is sampled by a bucket brigade 
device of length 30. The resultant 30 dimensional analogue vector is adaptively linear 
transfonned to facilitate a shift and scale invariant match to a digital (7 bit per dimension) 
template. The IC generates digital representations of the square of the Euclidean distance 
between the transfonned analogue vector and the digital template. A block diagram of the 
IC appears in Figure I. The IC has been fabricated. Perfonnance figures in this paper are 
based on measurements of the chip fabricated in a 1.2/-Lm CMOS MOSIS process. 

The block diagram shows the input signal being sampled by the bucket brigade device 
(BBD)[4]. The signal is sampled at a rate of 250 Hz. Existing circuitry in the defibrillator 
detects the peak of the heart beat and hence indicates a coarse alignment (due to detection 
jitter) to the template stored in the template DACs (TDACs). The BBD continues to sample 
until the coarse alignment is attained at which point the IC is biased up. The BBD now 
contains a segment of the ICEG corresponding to one heart beat. The digital error output is 
then monitored with the linear transfonn blocks configured to I: I mappings until an error 
minimum is detected indicating optimal sampling alignment. The three linear transfonn 
coefficient DACs (CDACs) which are common to the 30 linear transfoqn blocks may then 
be adapted to further reduce the matching error. The transfonnation can be represented by 
yen) = aox(n - 1) + alx(n) + a2x(n + 1) where ao corresponds to CDACO etc. This 
constitutes a general linear long tenn prediction [8]. Constraining CDACO and CDAC2 to 
be equal magnitudes and opposite signs results in a minimisation of errors due to phase 
and amplitude variation and a simpler adaptation procedure. The matching error is com­
puted via the squarer blocks and the summing node. The matching error consists of both a 
magnitude and exponent thereby increasing the dynamic range of the error representation. 
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The magnitude is the output of the squarer block. The exponent is determined by control 
of a current reference in the squaring circuit. A reference DAC and precision current com­
parator provide the means of successive approximation AID conversion of the matching 
error current [ERR. Using this scheme heart beat morphology can be classified by loading 
different templates (TDAC values). A stream of beats may be compressed by identify­
ing matches with continuously updated representations of previous beats. Close matches 
are encoded by an index and an amplitude coefficent while poor matches are encoded by 
quanti sed residuals which have been minimised by the linear prediction. 

3.2 Adaptation and Learning 

The first step in the learning process is to determine a, the coarse phase lag. This can be 
achieved by shifting the delay line and evaluating the error until a minimum is reached. 
Once the coarse phase lag a has been determined the error function to be minimised to 
compensate for amplitude and phase variations is given by E = E~I (bOXi+bI~Xi-Wi)2, 
where the subscript i implicitly incorporates the coarse phase a. This is a quadratic in 
bo and bl . bo and bi can be optimised separately provided cross terms in E are negligible. 

Here the cross terms are given by E~I 2bobIXi~Xi = bobI(XN+IXN - XIXO). Thus, if 
the end points of the N point window have approximately the same value (as is usually 
the case for ICEG beats) then the cross terms in E are negligible and bo and bi can be 
optimised separately. 

So the only remaining issue is how to optimise a single parameter. A simple linear search 
takes at most 2b evaluations of E where b is the number of bits. A search based on bisection 
takes b + 2 evaluations. Techniques involving gradient descent and conjugate gradient 
lead to more complex learning logic with minor reductions in the number of evaluations. 
Therefore, bisection is the best compromise between the number of evaluations and the 
complexity of the learning state machine. 

Once the best template match has been achieved, learning may also then be applied to 
the template itself depending on the application and context. For example, in the case 
of adaptive classification a weight perturbation algorithm [6] could be used to adapt the 
template for morphological drift based on heart rate information. Similarly, for a data 
compression application, if the template match exceeds a fidelity criterion the template 
may be adapted and the template changes logged in the compression record. 

3.3 Building Blocks 

In order to implement the template matcher, sub-threshold analogue VLSI building blocks 
were designed. All transistors in the building blocks operate in weak inversion exclusively. 
We do not have the space to describe all of the building blocks, so we will focus here on 
the linear transform and squarer cells. 

3.3.1 Linear Transform Cell 

The linear transform (LT) cell consists of three linearised differential pairs [7] with their 
biases controlled by the coefficient DACs (CDACs) (see Figure 2(a». The nature ofthe lin­
earisation is controlled by the ratio of the aspect ratios.ofM3 to M5 and M4 to M6. Methods 
for choosing this ratio are discussed in [5]. Denoting the aspect ratio of a transistor by S we 
chose S3/ S5 = S4/ S6 = 4. This introduces some ripple in the transconductance while 
increasing the asymptotic saturation voltage to 4nUT compared to nUT for the ordinary 
differential pair. Signed coefficients are achieved by switches at the outputs of the differ­
ential pairs. The template DACs (TDACs) have differential outputs to form the difference 
y(n) - w(n) where w(n) is the nth template value. 
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3.3.2 Squaring Cell 

The squaring function must meet the following design constraints. It should have current 
inputs and outputs in order to avoid linear current to voltage conversion at low currents. The 
squared current must be normalised to the original linear range to avoid excessive power 
consumption. The squaring function should avoid the MOS square law approach in order 
to conserve space and power, and the the available voltage range should be 3.3 V rail to 
rail. 
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Figure 2: (a) Circuit diagram of one of three the linear transform linearised differential 
pairs in the LT cell. (b) Circuit diagram of the squarer (SQ cell) and the summing node. 

The choices available then are restricted to weak inversion circuits. The circuit (see Fig­
ure 2(b)) used relies on the translinear principle [9]. Here, loops of MOS g-s diode struc­
tures operating in weak inversion are used to form a normalised squared current which is 
summed to form the final normalised output. The translinear loops are implemented with 
P-type transistors in separate N-wells to avoid the body effect. Positive and negative inputs 
are squared separately using the RCLK signals and then added at the output. 

3.4 Circuit Performance 

Table 1: Summary of electrical specifications of the chip. 
Item Conditions 
Template dimension 
Adaptation coefficients 
DAC Precision 
Max. Error per dimensiona 

LSB bias 
Power comsumption 

Excludes squarer error gain control 
Weighted lateral PNP 
CDACx=64, DCBBD, wlr to TDACs 

TDACs=CDACl=64, duty cycleb = 3.2% 

Value 
30 
3 
7 bits 
2 bits 
2nA 
2.5 J-LW 

a Excludes error at 1st CDACO stage. b For 1 bpm, chip biased up 8/250 of the time. 

We provide three measures of the performance of the chip along with a summary of its 
basic electrical characteristics which is shown in Table 1. The first measure characterises 
the accuracy of the template matching function relative to the available precision of the 
template. This is summarised by the Maximum Error per dimension in Table 1 which was 
produced by inputing a zero offset DC signal into the BBD and setting each CDAC in turn to 
one half of its maximum value. The TDACs were then adjusted so as to minimise the output 
of the squarer. Therefore, the reSUlting TDAC values indicate the accumulated effects of 
transistor mismatches through each path to the squarer output. The curves generated are 
averages over 80 trials to remove noise influences (where as the classification performance 
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shown in Table Irefvterr-tab includes such influences). The curves showed that except for 
the input stage corresponding to CDACO (stage 30) the accumulated mismatches influence 
the two least significant bits of the TDACs. A larger error of 4 bits for the first stage 
feeding CDACO was due to a design oversight of not providing a dummy capacitive load 
to the input end of the BBD (stage 30 of CDACO derives its input from the input BBD cell, 
which does not have the full capacitive loading of three linearised differential pairs as on 
the rest of the cells). 

Table 2: Relative impact on the error output of the chip for the adaptation steps of align­
ment, amplitude and phase correction for patient No. 2s ST rhythm. The errors are nor­
malised to the non-aligned error. A numerical simulation is provided for comparison to the 
chip performance. 

Adaptation step 
No align 
Align 
Amplitude 
Phase 

Chip Error 
1.0 

0.31 
0.16 
0.07 

Std. Dev. 
0.04 
0.07 
0.05 
0.01 

Simulation Error 
1.0 

0.41 
0.37 
0.32 

Std. Dev. 
0.28 
0.35 
0.22 
0.16 

The second performance measure uses real heart patients ICEG (Sinus Tachycardia) ST 
data. Table 2 shows the normalised output error of the chip averaged over 107 heart beats 
while being compared to the 10th beat in the series. The normalised error was measured 
from a mirrored version of the current at the output of the chip. The adaptation steps shown 
in the table are as follows. "No align" implies that the error for the template match is deter­
mined only by the approximate alignment provided by a numerical simulation of the beat 
detector of the ICD. "Align" corresponds to coarse alignment where the matching error is 
calculated up to two samples either side to determine the best positioning of the input in 
the BBD. "Amplitude" corresponds to adaptation of the amplitude coefficient by adjust­
ment ofCDAC1. "Phase" corresponds to adaptation of the difference between CDAC2 and 
CDACO. Each of the adaptations reduces the error of the match with the coarse alignment 
being most significant. An idealised limited precision numerical simulation of the error 
calculation is also provided in the table for comparison. It can be seen that the amplitude 
and phase adaptation steps lower the relative error more for the chip than in the simulation. 
This is most likely due to the adaptation on the chip also compensating for the analogue 
noise and imprecision as well as the variability of the original data. 

The third performance measure illustrates the ability of the chip to solve a blind classi­
fication problem and is summarised in Table 3. The safe rhythm of the patient is Sinus 
Tachycardia (ST). For each patient one beat is chosen at random as the template and is 
loaded into the TDACs of the chip. The 20 beats subsequent to the chosen template are 
then used to determine the average error between templates after adaptation. Twice this 
error is then used as the classifier threshold for "safe" versus "unknown". The ST and 
VT data sets for the patient are then passed through the chip and classified giving the col­
umn "% Correct chip". For comparison the expected best performance for the data set are 
also reproduced in the table from previous work by the authors [3]. The results indicate 
that a very simple blind classification algorithm when combined with the adaptive template 
matching capabilities of the chip shows good performance for 4 out of 5 patients. 

4 CONCLUSION 

We have presented a micropower learning vector quantization system that can provide hard­
ware support for both signal classification and compression of ICEG signals. The analogue 
block can be used to implement several different classification and compression algorithms 
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Table 3: Performance of the chip on a blind classification task for 5 patients with Ventricular 
Tachycardia (VT) 1: 1 retrograde conduction compared to classification bounds. 

a The R point search interval was increased to 4 for this patient. 

depending on how the template matching capability is utilised. By providing significant 
compression capability in an lCD, a larger data base of natural onset cardiac arrhythmia 
should become available, leading to improved designs of ICD based adaptive classification 
and compression systems. 
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