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Abstract 

Cluster analysis is a fundamental principle in exploratory data 
analysis, providing the user with a description of the group struc­
ture of given data. A key problem in this context is the interpreta­
tion and visualization of clustering solutions in high- dimensional 
or abstract data spaces. In particular, probabilistic descriptions 
of the group structure, essential to capture inter-cluster relation­
ships, are hardly assessable by simple inspection ofthe probabilistic 
assignment variables. VVe present a novel approach to the visual­
ization of group structure. It is based on a statistical model of the 
object assignments which have been observed or estimated by a 
probabilistic clustering procedure. The objects or data points are 
embedded in a low dimensional Euclidean space by approximating 
the observed data statistics with a Gaussian mixture model. The 
algorithm provides a new approach to the visualization of the inher­
ent structure for a broad variety of data types, e.g. histogram data, 
proximity data and co-occurrence data. To demonstrate the power 
of the approach, histograms of textured images are visualized as an 
example of a large-scale data mining application. 

1 Introduction 

Clustering and visualization are key issues in exploratory data analysis and are 
fundamental principles of many unsupervised learning schemes. For a given data 
set, the aim of any clustering approach is to extract a description of the inherent 
group structure. The object space is partitioned into groups where each partition 
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is as homogeneous as possible and two partitions are maximally heterogeneous. For 
several reasons it is useful to deal with probabilistic partitioning approaches: 

1. The data generation process itself might be stochastic, resulting in over­
lapping partitions. Thus, a probabilistic group description is adequate and 
provides additional information about the inter-cluster relations. 

2. The number of clusters might be chosen too large. Forcing the algorithm 
to a hard clustering solution creates artificial structure not supported by 
the data. On the other hand , superfluous clusters can be identified by a 
probabilistic group description . 

3. There exists theoretical and empirical evidence that probabilistic assign-
ments avoid over-fitting phenomena [7]. 

Several well-known clustering schemes result in fuzzy cluster assignments: For the 
most common type of vector- valued data, heuristic fuzzy clustering methods were 
suggested [4, 5] . In a more principled way, deterministic annealing algorithms pro­
vide fuzzy clustering solutions for a given cost function with a rigorous statistical 
foundation and have been developed for vectorial [9], proximity [6] and histogram 
data [8]. In mixture model approaches the assignments of objects to groups are 
interpreted as missing data. Its conditional expectations given the data and the 
estimated cluster parameters are computed during the E- step in the corresponding 
EM-algorithm and can be understood as assignment probabilities. 

The aim of this contribution is to develop a generic framework to visualize such 
probabilities as distances in a low dimensional Euclidean space . Especially in high 
dimensional or abstract object spaces, the interpretation of fuzzy group structure is 
rather difficult, as humans do not perform very well in interpreting probabilities. It 
is, therefore , a key issue to make an interpretation of the cluster structure more fea­
sible. In contrast to multidimensional scaling (MDS), where objects are embedded 
in low dimensional Euclidean spaces by preserving the original inter object distances 
[3], our approach yields a mixture model in low dimensions , where the probabilities 
for assigning objects to clusters are maximally preserved. The proposed approach 
is similar in spirit to data visualization methods like projection pursuit clustering, 
GTM [1], simultaneous clustering and embedding [6]' and hierarchical latent vari­
able models [2] . It also aims on visualizing high dimensional data. But while the 
other methods try to model the data itself by a low dimensional generator model, 
we seek to model the inferred probabilistic grouping structure. As a consequence, 
the framework is generic in the sense that it is applicable to any probabilistic or 
fuzzy group description. 

The key idea is to interpret a given probabilistic group description as an observa­
tion of an underlying random process. We estimate a low- dimensional statistical 
model by maximum likelihood inference which provides the visualization . To our 
knowledge the proposed algorithm provides the first solution to the visualization 
of distributional data, where the observations of an object consists of a histogram 
of measured features . Such data is common in data mining applications like image 
retrieval where image similarity is often based on histograms of color or texture 
features. Moreover, our method is applicable to proximity and co- occurrence data. 

2 Visualizing Probabilistic Group Structure 

Let a set of N (abstract) objects CJ = {01 , ... , ON} be given which have been par­
titioned into K groups or clusters. Let the fuzzy assignment of object OJ to cluster 
Cv be given by qjv E [0,1], where we assume 2:~=1 qjv = 1 to enable a probabilistic 
interpretation . We assume that there exists an underlying "true" assignment of 
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objects to clusters which we encode by Boolean variables Miv denoting whether 
object OJ belongs to (has been generated by) cluster Cv . We thus interpret qiv as 
an empirical estimate of the probability P(Miv = 1). For notational simplicity, we 
summarize the assignment variables in matrices Q = (qiv) and M = (Miv). 

The key idea for visualizing group structure is to exploit a low-dimensional statis­
tical model which "explains" the observed qiv. The parameters are estimated by 
maximum likelihood inference and provide a natural data visualization. Gaussian 
mixture models in low dimensions (typically d = 2 or d = 3) are often appropriate 
but the scheme could be easily extended to other classes, e.g. hierarchical mod­
els. To define the Gaussian mixture model, we first introduce a set of prototypes 
Y = {Y1, ... ,YK} C JRd representing the K clusters, and a set vector-valued object 
parameters X = {Xl, ... ,XN} C JRd. To model the assignment probabilities, the 
prototypes Y and the data points X are chosen such that the resulting assignment 
probabilities are maximally similar to the given frequencies Q. For the Gaussian 
mixture model we have 

Note that the probability distribution is invariant under translation and rotation 
of the complete parameter sets X, y. In addition, the scale parameter f3 could be 
dropped since a change of f3 only results in a rescaling of the prototypes Y and the 
data points X. For the observation Q the log-likelihood is given by1 

N K 

LQ (X,Y) = LLqivlogmiv . (2) 
i=l v=l 

It is worth to note that when the qiv = (Miv}ptrue are estimates obtained by 
a factorial distribution, i.e. ptrue(M) = I1 Lv Mivqiv, then maximizing (2) is 
identical to minimizing the Kullback- Leibler (KL-)divergence DKdptruellP) = 
LM p true log (ptrue IP). In that case the similarity to the recent approach of Hof­
mann et al. [6] proposed as the minimization of DKdPllptrue) becomes apparent. 
Compared to [6] the role of P and ptrue is interchanged. From an information­
theoretic viewpoint DKdptruellP) is a better choice as it quantifies the coding in­
efficiency of assuming the distribution P when the true distribution is p true . Note 
that the choice of the KL-divergence as a distortion measure for distributions fol­
lows intrinsically from the likelihood principle. Maximum likelihood estimates are 
derived by differentiation: 

~ qiv 8m iv ~ (~ ) L..J-. -8. =-2f3L..Jqiv L..J m i/1Y/1-Yv , 
m~v x, v=l v=l /1=1 

(3) 

N K N K 

LL qj~ 88miV =-2f3LLqiv(miO'- JO'v)(Xi-YO') 
i=l v=l mw yO' i=l v=l 

N 

-2f3L (miO' - qiO') (Xi - yO') (4) 
i=l 

The gradients can be used for any gradient descent scheme. In the experiments, 
we used (3)-(4) in conjunction with a simple gradient descent technique, which has 

1 Here, it is implicitly assumed that all qiv have been estimated based on the same 
amount of information. 



Visualizing Group Structure 455 

0.8 

0.6 

+ 

Figure 1: Visualization of two-dimensional artificial data. Original data generated 
by the mixture model with f3 = 1.0 and 5 prototypes. Crosses denote the data 
points Xi, circles the prototypes Ya. The embedding prototypes are plotted as 
squares, while the embedding data points are diamonds. The contours are given by 

!(x) = maXa (exp (-f3llx - Ya 112)/L~=1 exp (-f3llx - Y/JW)), For visualization 
purposes the embedding is translated and rotated in the correct position. 

been observed to be efficient and reliable up to a few hundred objects. From (4) an 
explicit formula for the prototypes may be recovered 

Ya (5) 

which can be interpreted as an alternative centroid rule. The position of the proto­
types is dominated by objects with a large deviation between modeled and measured 
assignment probabilities. Note that (5) should not be used as an iterative equation 
as the corresponding fixed point is not contractive. 

3 Results 

As a first experiment we discuss the approximately recoverable case, where we sam­
ple from (1) to generate artificial two-dimensional data and infer the positions of 
the sample points and of the prototypes by the visualizing group structure approach 
(see Fig. 1). Due to iso- contour lines in the generator density and in the visual­
ization density not all data positions are recovered exactly. We like to emphasize 
that the complete information available on the grouping structure of the data is 
preserved, since the mean KL-divergence is quite small (Ri 2.10.10- 5). It is worth 
mentioning that the rank-order of the assignments of objects i to clusters (}' is 
completely preserved. 

For many image retrieval systems image similarity has been defined as similarity of 
occurring feature coefficients, e.g. colors or texture features. In [7], a novel statis­
tical mixture model for distributional data, the probabilistic histogram clustering 
(ACM), has been proposed which we applied to extract the group structure inher­
ent in image databases based on histograms of textured image features. The ACM 
explains the observed data by the generative model: 
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Figure 2: Embedding of the VisTex database with MDS. 

1. select an object OJ E 0 with probability Pi, 
2. choose a cluster Ca according to the cluster membership Mia of Oi, 

3. sample a feature Vj E V from the cluster conditional distribution qjla. 

This generative model is formalized by 
K 

P (OJ, vjIM,p, q) = Pi L Miaqjla (6) 
a=1 

The parameters are estimated by maximum likelihood inference. The assignments 
Mia are treated as unobserved data in an (annealed) EM procedure, which provides 
a probabilistic group description. For the details we refer to [7]. 

In the experiments, texture features are extracted by a bank of 12 Gabor filters 
with 3 scales and 4 orientations. Different Gabor channels are assumed to be inde­
pendently distributed, which results in a concatenated histogram of the empirically 
measured channel distributions. Each channel was discretized into 40 bins resulting 
in a 480 dimensional histogram representing one image. For the experiments two 
different databases were used. 

In Fig. 3 a probabilistic K = 10 cluster solution with 160 images containing different 
textures taken from the Brodatz album is visualized. The clustering algorithm 
produces 8 well separated clusters, while the two clusters in the mid region exhibit 
substantial overlap. A close inspection of these two clusters indicates that the 
fuzziness of the assignments in this area is plausible as the textures in this area 
have similar frequency components in common. 

The result for a more complex database of 220 textured images taken from the MIT 
VisTex image database with a large range of uniformly and non-uniformly textured 
images is depicted in Fig. 4. This plot indicates that the proposed approach provides 
a structured view on image databases. Especially the upper left cluster yields some 
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insight in the clustering solution, as this cluster consists of a large range of non­
uniformly textured images, enabling the user to decide that a higher number of 
clusters might yield a better solution. The visualization approach fits naturally in 
an interactive scenario, where the user can choose interactively data points to focus 
his examination to certain areas of interest in the clustering solution. 

For comparison, we present in Fig. 2 a multidimensional scaling (Sammon's mapping 
[3]) solution for the VisTex database. A detailed inspection of this plot indicates, 
that the embedding is locally quiet satisfactory, while no global structure of the 
database is visible. This is explained by the fact, that Sammon's mapping only 
tries to preserve the object distances, while our novel approach first extracts group 
structure in a high dimensional feature space and than embeds this group structure 
in a low dimensional Euclidean space. While MDS completely neglects the grouping 
structure we do not care for the exact inter object distances. 

4 Conclusion 

In this contribution, a generic framework for the low-dimensional visualization of 
probabilistic group structure was presented. The effectiveness of this approach was 
demonstrated by experiments on artificial data as well as on databases of textured 
images. While we have focussed on histogram data the generality of the approach 
makes it feasible to visualize a broad range of different data types, e.g. vectorial, 
proximity or co-occurrence data. Thus, it is useful in a broad variety of applications, 
ranging from image or document retrieval tasks, the analysis of marketing data to 
the inspection of protein data. We believe that this technique provides the user 
substantial insight in the validity of clustering solutions making the inspection and 
interpretation of large databases more practicable. 

A natural extension of the proposed approach leads to the visualization of hierar­
chical cluster structures by a hierarchy of visualization plots. 
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Figure 3: Visualization of a probabilistic grouping structure inferred for a database 
of 160 Brodatz textures. A mean KL-divergence of 0.031 is obtained. 

Figure 4: Visualization of a probabilistic grouping structure inferred for 220 images 
of the VisTex database. A mean KL-divergence of 0.0018 is obtained. 


