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Abstract 

O(ws(s log d+log(dqh/ s))) and O(ws((h/ s) log q) +log(dqh/ s)) are 
upper bounds for the VC-dimension of a set of neural networks of 
units with piecewise polynomial activation functions, where s is 
the depth of the network, h is the number of hidden units, w is 
the number of adjustable parameters, q is the maximum of the 
number of polynomial segments of the activation function, and d is 
the maximum degree of the polynomials; also n(wslog(dqh/s)) is 
a lower bound for the VC-dimension of such a network set, which 
are tight for the cases s = 8(h) and s is constant. For the special 
case q = 1, the VC-dimension is 8(ws log d). 

1 Introduction 

In spite of its importance, we had been unable to obtain VC-dimension values for 
practical types of networks, until fairly tight upper and lower bounds were obtained 
([6], [8], [9], and [10]) for linear threshold element networks in which all elements 
perform a threshold function on weighted sum of inputs. Roughly, the lower bound 
for the networks is (1/2)w log h and the upper bound is w log h where h is the number 
of hidden elements and w is the number of connecting weights (for one-hidden-Iayer 
case w ~ nh where n is the input dimension of the network). 

In many applications, though, sigmoidal functions, specifically a typical sigmoid 
function 1/ (1 + exp( -x)), or piecewise linear functions for economy of calculation, 
are used instead of the threshold function. This is mainly because the differen­
tiability of the functions is needed to perform backpropagation or other learning 
algorithms. Unfortunately explicit bounds obtained so far for the VC-dimension of 
sigmoidal networks exhibit large gaps (O(w2h2) ([3]), n(w log h) for bounded depth 
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and f!(wh) for unbounded depth) and are hard to improve. For the piecewise linear 
case, Maass obtained a result that the VO-dimension is O(w210g q), where q is the 
number of linear pieces of the function ([5]). 

Recently Koiran and Sontag ([4]) proved a lower bound f!(w 2 ) for the piecewise 
polynomial case and they claimed that an open problem that Maass posed if there 
is a matching w 2 lower bound for the type of networks is solved. But we still have 
something to do, since they showed it only for the case w = 8(h) and the number 
of hidden layers being unboundedj also O(w2 ) bound has room to improve. 

We in this paper improve the bounds obtained by Maass, Koiran and Sontag and 
consequently show the role of polynomials, which can not be played by linear func­
tions, and the role of the constant functions that could appear for piecewise poly­
nomial case, which cannot be played by polynomial functions. 

After submission of the draft, we found that Bartlett, Maiorov, and Meir had ob­
tained similar results prior to ours (also in this proceedings). Our advantage is that 
we clarified the role played by the degree and number of segments concerning the 
both bounds. 

2 Terminology and Notation 

log stands for the logarithm base 2 throughout the paper. 

The depth of a network is the length of the longest path from its external inputs to 
its external output, where the length is the number of units on the path. Likewise 
we can assign a depth to each unit in a network as the length of the longest path 
from the external input to the output of the unit. A hidden layer is a set of units at 
the same depth other than the depth of the network. Therefore a depth L network 
has L - 1 hidden layers. 

In many cases W will stand for a vector composed of all the connection weights in 
the network (including threshold values for the threshold units) and w is the length 
of w. The number of units in the network, excluding "input units," will be denoted 
by hj in other words, the number of hidden units plus one, or sometimes just the 
number of hidden units. A function whose range is {O, 1} (a set of 0 and 1) is 
called a Boolean-valued function. 

3 Upper Bounds 

To obtain upper bounds for the VO-dimension we use a region counting argu.ment, 
developed by Goldberg and Jerrum [2]. The VO-dimension of the network, that is, 
the VO-dimension of the function set {fG(wj . ) I W E'RW} is upper bounded by 

max {N 12N ~ Xl~.~N Nee ('Rw - UJ:1.N'(fG(:Wj x£))) } (3.1) 

where NeeO is the number of connected components and .N'(f) IS the set 
{w I f(w) = O}. 

The following two theorems are convenient. Refer [11] and [7] for the first theorem. 
The lemma followed is easily proven. 

Theorem 3.1. Let fG(wj Xi) (1 ~ i ~ N) be real polynomials in w, each of degree 
d or less. The number of connected components of the set n~l {w I fG(wj xd = O} 
is bounded from above by 2(2d)W where w is the length of w. 
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Lemma 3.2. Ifm ~ w(1ogC + loglogC + 1), then 2m > (mC/w)W for C ~ 4. 

First let us consider the polynomial activation function case. 

Theorem 3.3. Suppose that the activation function are polynomials of degree at 
most d. O( ws log d) is an upper bound of the VC-dimension for the networks with 
depth s. When s = 8(h) the bound is O(whlogd). More precisely ws(1ogd + 
log log d + 2) is an upper bound. Note that if we allow a polynomial as the input 
function, d1d2 will replace d above where d1 is the maximum degree of the input 
functions and d2 is that of the activation functions. 

The theorem is clear from the facts that the network function (fa in (3.1)) is a 
polynomial of degree at most dS + ds- 1 + ... + d, Theorem 3.1 and Lemma 3.2. 

For the piecewise linear case, we have two types of bounds. The first one is suitable 
for bounded depth cases (i . e. the depth s = o( h)) and the second one for the 
unbounded depth case (i.e . s = 8(h)). 

Theorem 3.4. Suppose that the activation functions are piecewise polynomials with 
at most q segments of polynomials degree at most d. O(ws(slogd + log(dqh/s))) 
and O(ws((h/s)logq) +log(dqh/s)) are upper bounds for the VC-dimension, where 
s is the depth of the network. More precisely, ws((s/2)logd + log(qh)) and 
ws( (h/ s) log q + log d) are asymptotic upper bounds. Note that if we allow a polyno­
mial as the input function then d1 d2 will replace d above where d1 is the maximum 
degree of the input functions and d2 is that of the activation functions. 

Proof. We have two different ways to calculate the bounds. First 

S 

i=1 

< s (8eNQhs(di-1 + .. . + d + l)d) 'l»l+'''+W; 

-p Wl+"'+W' 
J=1 J 

::; (8eNqd(s:)/2(h/S)) ws 

where hi is the number of hidden units in the i-th layer and 0 is an operator to 
form a new vector by concatenating the two. From this we get an asymptotic upper 
bound ws((s/2) log d + log(qh)) for the VC-dimension. 

Secondly 

From this we get an asymptotic upper bound ws((h/s)logq + log d) for the VC­
dimension. Combining these two bounds we get the result. Note that sin log( dqh/ s) 
in it is introduced to eliminate unduly large term emerging when s = 8(h) . 0 

4 Lower Bounds for Polynomial Networks 

Theorem 4.1 Let us consider the case that the activation function are polynomials 
of degree at most d . n( ws log d) is a lower bound of the VC-dimension for the 
networks with depth s. When s = 8(h) the bound is n(whlogd), More precisely, 
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(1/16)w( 5 - 6) log d is an asymptotic lower bound where d is the degree of activation 
functions and is a power of two and h is restricted to O(n2) for input dimension n. 

The proof consists of several lemmas. The network we are constructing will have 
two parts: an encoder and a decoder. We deliberately fix the N input points. The 
decoder part has fixed underlying architecture but also fixed connecting weights 
whereas the encoder part has variable weights so that for any given binary outputs 
for the input points the decoder could output the specified value from the codes in 
which the output value is encoded by the encoder. 

First we consider the decoder, which has two real inputs and one real output. One 
of the two inputs y holds a code of a binary sequence bl , b2, ... ,bm and the other x 
holds a code of a binary sequence Cl, C2, ... ,Cm . The elements of the latter sequence 
are all O's except for Cj = 1, where Cj = 1 orders the decoder to output bj from it 
and consequently from the network. 

We show two types of networks; one of which has activation functions of degree at 
most two and has the VC-dimension w(s-l) and the other has activation functions 
of degree d a power of two and has the VC-dimension w( s - 5) log d. 

We use for convenience two functions 'H9(X) = 1 if x 2:: 0 and ° otherwise and 
'H9,t/J (x) = 1 if x 2:: cp, ° if x ::; 0, and undefined otherwise. Throughout this section 
we will use a simple logistic function p(x) = (16/3)x(1- x) which has the following 
property. 

Lemma 4.2. For any binary sequence bl , b2, . .. , bm , there exists an interval [Xl, X2] 
such that bi = 'Hl /4,3/4(pi(x)) and ° :S /(x) ::; 1 for any x E [Xl, X2]' 

The next lemmas are easily proven. 

Lemma 4.3. For any binary sequence Cl, C2,"" Cm which are all O's except for 
Cj = 1, there exists Xo such that Ci = 'Hl /4,3/4(pi(xo)). Specifically we will take Xo = 

p~(j-l)(1/4), where PLl(x) is the inverse of p(x) on [0,1/2]. Then pi-l(xo) = 1/4, 
pi(xo) = 1, pi(xo) = ° for all i > j, and pj-i(xo) ::; (1/4)i for all positive i ::; j. 

Proof. Clear from the fact that p(x) 2:: 4x on [0,1/4]. o 

Lemma 4.4. For any binary sequence bl , b2, ... , bm , take y such that bi 
'H 1 / 4,3/4(pi(y)) and ° ::; pi(y) ::; 1 for all i and Xo = p~(j-l)(1/4), then 
'H7/ 12 ,3/4 (l::l pi(xo)pi(y)} = bi' i.e. 'Ho (l::l pi(xo)pi(y) - 2/3} = bi' 

Proof. If bj = 0, l::l pi(xo)pi(y) = l:1=1 pi(xo)pi(y) :S pi(y) + l:1:::(1/4)i < 
pi(y) + (1/3)::; 7/12. If bj = 1, l::l pi(xo)pi(y) > pi(xo)pi(y) 2:: 3/4. 0 

By the above lemmas, the network in Figure 1 (left) has the following function: 

Suppose that a binary sequence bl , ... ,bm and an integer j is given. Then we 
can present y that depends only on bl , •• • ,bm and Xo that depends only on j 
such that bi is output from the decoder. 

Note that we use (x + y)2 - (x - y)2 = 4xy to realize a multiplication unit. 

For the case of degree of higher than two we have to construct a bit more complicated 
one by using another simple logistic function fL(X) = (36/5)x(1- x). We need the 
next lemma. 

Lemma 4.5. Take Xo = fL~(j-l)(1/6), where fLLl(X) is the inverse of fL(X) on 
[0,1/2]. Then fLi-1(xo) = 1/6, fLj(XO) = 1, fLi(xo) = ° for all i > j, and fLi-i(xo) = 
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Figure 1: Network architecture consisting of polynomials of order two (left) and 
those of order of power of two (right). 

(1/6)i for all i > 0 and $ j. 

Proof. Clear from the fact that J-L(x) ~ 6x on [0,1/6]. 0 

Lemma 4.6. For any binary sequence bl. b2, . .. , bk, bk+b bk+2, . .. ,b2k , 
... , b(m-1)H1,'''' bmk take y such that bi = 1-l1/4,3/4(pi(y)) and 0 $ pi(y) $ 1 
for all i. Moreover for any 1 $ j $ m and any 1 $ 1 $ k take Xl = 
J-LL(j-1)(1/6), and Xo = J-LL(I-1)(1/6k). Then for Z = E:1 pik(Y)J-Lik(xt), 

1-lo (E~==-Ol pi(z)J-Li(xo) - (1/2)) = bki+l holds. 

Lemma 4.7. If 0 < pi(x) < 1 for any 0 < i $1, take an £ such that (16/3)1£ < 1/4. 
Then pl(x) - (16/3)1£ < pl(x + £) < pl(x) + (16/3)1£. 

Proof.. There are four cases ~epending on ~hether pl- ~ (x + £) is on the uphill or 
downhIll of p and whether x IS on the uphlll or downhIll of p -1 . The proofs are 
done by induction. 

First suppose that the two are on the uphill. Then pl(x + £) = p(pl-1\X + f)) < 
p(pl-1(X) + (16/3)1-1£)) < pl(x) + (16/3)1£. Secondly suppose that p -l(x + £) 
is on the uphill but x is on the downhill. Then pl(x + £) = p(pl-1(x + f)) > 
p(pl-1(x) - (16/3)1-1£)) > pl(x) - (16/3)1£. The other two cases are similar. 0 

Proof of Lemma 4.6. We will show that the difference between piHl(y) 

and E~==-ol p'(z)J-Li(xo) is sufficiently small. Clearly Z = E:1 J-Lik(X1)pik(y) = 
E{=l J-Lik(X1)pik(y) $ pik(y)+ E{~i(1/6k)i < pik(y)+1/(6k -1) and pik(y) < z. If 
Z is on the uphill of pI then by using the above lemma, we get E~==-Ol pi(z)J-Li(xO) = 
E~=o p'(z)J-Li(xo) < pl(z) + 1/(6k - 1) < piHl(y) + (1 + (16/3)1)(1/(6k - 1)) < 
pik+1(y) + 1/4 (note that 1 $ k - 1 and k ~ 2). If z is on the downhill of pI then 

by using the above lemma, we get E~==-Ol pi(Z)J-Li(xo) = E~=o pi(z)J-Li(xo) > pl(z) > 
pl(pik(y)) _ (16/3)1(1/(6k - 1)) > pik+l(y) - 1/4. 0 

Next we show the encoding scheme we adopted. We show only the case w = 8(h2 ) 

since the case w = 8(h) or more generally w = O(h2) is easily obtained from this. 

Theorem 4.8 There is a network of2n inputs, 2h hidden units with h2 weights w, 
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and h 2 sets of input values Xl, ... ,Xh2 such that for any set of values Y1, ... , Yh2 

we can chose W to satisfy Yi = fG(w; Xi). 

Proof. We extensively utilize the fact that monomials obtained by choosing at most 
k variables from n variables with repetition allowed (say X~X2X6) are all linearly 
independent ([1]). Note that the number of monomials thus formed is (n~m). 

Suppose for simplicity that we have 2n inputs and 2h main hidden units (we have 
other hidden units too), and h = (n~m). By using multiplication units (in fact each 
is a composite of two squaring units and the outputs are supposed to be summed up 
as in Figure 1), we can form h = (n~m) linearly independent monomials composed 
of variables Xl, . •• ,Xn by using at most (m -l)h multiplication units (or h nominal 
units when m = 1). In the same way, we can form h linearly independent monomials 
composed of variables Xn+ll . .• , X2n. Let us denote the monomials by U1, •.• , Uh 

and V1, . .. , Vh. 

We form a subnetwork to calculate 2:7=1 (2:7=1 Wi,jUi)Vj by using h multiplication 
units. Clearly the calculated result Y is the weighted sum of monomials described 
above where the weights are Wi,j for 1 $ i, j $ h. 

Since y = fG(w; x) is a linear combination of linearly independent terms, if we 
choose appropriately h2 sets of values Xll . . . , Xh2 for X = (Xl, .. • , X2n) , then for 
any assignment of h2 values Y1, ... ,Yh2 to Y we have a set of weights W such that 
Yi = f(xi, w). 0 

Proof of Theorem -4.1. The whole network consists of the decoder and the encoder. 
The input points are the Cartesian product of the above Xl, ... ,Xh2 and {xo defined 
in Lemma 4.4 for bj = 111 $ j :$ 8'} for some h where 8' is the number of bits to 
be encoded. This means that we have h2 s points that can be shattered. 

Let the number of hidden layers of the decoder be 8. The number of units used 
for the decoder is 4(8 - 1) + 1 (for the degree 2 case which can decode at most 8 
bits) or 4(8 - 3) + 4(k - 1) + 1 (for the degree 2k case which can decode at most 
(8 - 2)k bits). The number of units used for the encoder is less than 4h; we though 
have constraints on 8 (which dominates the depth of the network) and h (which 
dominates the number of units in the network) that h :$ (n~m) and m = O(s) or 
roughly log h = 0(8) be satisfied. 

Let us chose m = 2 (m = log 8 is a better choise). As a result, by using 4h + 4(s -
I} + 1 (or 4h + 4(8 - 3) + 4(k -1) + 1) units in s + 2 layers, we can shatter h 2 8 (or 
h 2 (8 - 2) log d) points; or asymptotically by using h units 8 layers we can shatter 
(1/16)w( 8 - 3) (or (1/16)w( 8 - 5) log d) points. 0 

5 Piecewise Polynomial Case 

Theorem 5.1. Let us consider a set of networks of units with linear input func­
tions and piecewise polynomial (with q polynomial segments) activation functions . 
Q( W8 log( dqh/ 8)) is a lower bound of the VC-dimension, where 8 is the depth of the 
network and d is the maximum degree of the activation functions. More precisely, 
(1/16)w(s - 6)(10gd+ log(h/s) + logq) is an asymptotic lower bound. 

For the scarcity of space, we give just an outline of the proof. Our proof is based 
on that of the polynomial networks. We will use h units with activation function 
of q ~ 2 polynomial segments of degree at most d in place of each of pk unit in the 
decoder, which give the ability of decoding log dqh bits in one layer and slog dqh 
bits in total by 8( 8h) units in total. If h designates the total number of units, the 
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number of the decodable bits is represented as log(dqh/s). 

In the following for simplicity we suppose that dqh is a power of 2. Let pk(x) be 
the k composition of p(x) as usual i.e. pk(x) = p(pk-l(x)) and pl(X) = p(x). Let 
plogd,/(x) = /ogd(,X/(x)), where 'x(x) = 4x if x $ 1/2 and 4 - 4x otherwise, which 
by the way has 21 polynomial segments. 

Now the pk unit in the polynomial case is replaced by the array /ogd,logq,logh(x) of 
h units that is defined as follows: 

(i) plogd,logq,l(X) is an array of two units; one is plogd,logq(,X+(x)) where ,X+(x) = 
4x if x $ 1/2 and 0 otherwise and the other is plog d,log q ('x - (x)) where ,X - (x) = 0 
if x $ 1/2 and 4 - 4x otherwise. 

(ii) plog d,log q,m~x) is the array of 2m units, each with one of the functions 
plogd,logq(,X ( . .• ('x±(x)) . . . )) where ,X±( ... ('x±(x)) .. ·) is the m composition 
of 'x+(x) or 'x - (x). Note that ,X±( ... ('x±(x)) ... ) has at most three linear seg­
ments (one is linear and the others are constant 0) and the sum of 2m possible 
combinations t(,X±( . . . ('x±(x)) · . . )) is equal to t(,Xm(x)) for any function f 
such that f(O) = O. 

Then lemmas similar to the ones in the polynomial case follow. 
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We solve the dynamics of on-line Hebbian learning in perceptrons 
exactly, for the regime where the size of the training set scales 
linearly with the number of inputs. We consider both noiseless 
and noisy teachers. Our calculation cannot be extended to non­
Hebbian rules, but the solution provides a nice benchmark to test 
more general and advanced theories for solving the dynamics of 
learning with restricted training sets. 

1 Introduction 

Considerable progress has been made in understanding the dynamics of supervised 
learning in layered neural networks through the application of the methods of sta­
tistical mechanics. A recent review of work in this field is contained in [1 J. For 
the most part, such theories have concentrated on systems where the training set is 
much larger than the number of updates. In such circumstances the probability that 
a question will be repeated during the training process is negligible and it is possible 
to assume for large networks, via the central limit theorem, that the local field dis­
tribution is Gaussian. In this paper we consider restricted training sets; we suppose 
that the size of the training set scales linearly with N, the number of inputs. The 
probability that a question will reappear during the training process is no longer 
negligible, the assumption that the local fields have Gaussian distributions is not 
tenable, and it is clear that correlations will develop between the weights and the 
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questions in the training set as training progresses. In fact, the non-Gaussian char­
acter of the local fields should be a prediction of any satisfactory theory of learning 
with restricted training sets, as this is clearly demanded by numerical simulations. 
Several authors [2, 3, 4, 5, 6, 7] have discussed learning with restricted training sets 
but a general theory is difficult. A simple model of learning with restricted training 
sets which can be solved exactly is therefore particularly attractive and provides 
a yardstick against which more difficult and sophisticated general theories can, in 
due course, be tested and compared. We show how this can be accomplished for 
on-line Hebbian learning in perceptrons with restricted training sets and we ob­
tain exact solutions for the generalisation error and the training error for a class of 
noisy teachers and students with arbitrary weight decay. Our theory is in excellent 
agreement with numerical simulations and our prediction of the probability density 
of the student field is a striking confirmation of them, making it clear that we are 
indeed dealing with local fields which are non-Gaussian. 

2 Definitions 

We study on-line learning in a student percept ron S, which tries to perform a task 
defined by a teacher percept ron characterised by a fixed weight vector B* E ~N. 
We assume, however, that the teacher is noisy and that the actual teacher output 
T and the corresponding student response S are given by 

T: {-I, I}N ~ {-I, I} T(e) = sgn[B· eL 
S: {-I, I}N ~ {-I, I} S(e) = sgn[J· e]' 

where the vector B is drawn independently of e with probability p(B} which may 
depend explicitly on the correct teacher vector B*. Of particular interest are the 
following two choices, described in literature as output noise and Gaussian input 
noise, respectively: 

p(B} = >. 6(B+B*} + (1->.) 6(B-B*} (1) 

where >. ~ 0 represents the probability that the teacher output is incorrect, and 
N 

(B) = [~] T -I:f(B-Bo)2/'E2 
P 211'~2 e . (2) 

The variance ~2 / N has been chosen so as to achieve appropriate scaling for N ~ CXl. 

Our learning rule will be the on-line Hebbian rule, i.e. 

J(f+l) = (1- ~)J(f) + ~ e(f) sgn[B(f)· e(f)] (3) 

where the non-negative parameters, and fJ are the decay rate and the learning rate , 
respectively. At each iteration step f an input vector e(f) is picked at random from 
a training set consisting of p = aN randomly drawn vectors e· E {-I, I} N, f..L = 
1, . . . p. This set remains unchanged during the learning dynamics. At the same 
time the teacher selects at random, and independently of e(f}, the vector B(£), 
according to the probability distribution p(B} . Iterating equation (3) gives 

J(m) = (1 - ~) m J o + ~ ~ (1 _ ~) m-l-Ie(e) sgn[B(f) . e(f)] (4) 
(=0 

We assume that the (noisy) teacher output is consistent in the sense that if a 
question e reappears at some stage during the training process the teacher makes 
the same choice of B in both cases , i.e. if e(e) = e(f') then also B(f) = B(e') . This 
consistency allows us to define a generalised training set iJ by including with the p 
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questions the corresponding teacher vectors: 

D = {(e,B1), ... ,(e,BP)} 

There are two sources of randomness in this problem. First of all there is the random 
realisation of the 'path' n = ((e(O), B(O)), (e(l), B(l)), ... , (e(f), B (f)), ... }. This 
is simply the randomness of the stochastic process that gives the evolution of the 
vector J. Averages over this process will be denoted as ( ... ). Secondly there is the 
randomness in the composition of the training set. We will write averages over all 
training sets as ( ... )sets. We note that 

p 

(J[e(f), B(e))) = ~ L f(e, Btl) 
p tL=1 

(for all e) 

and that averages over all possible realisations of the training set are given by 

(J[(e, B1), (e, B2), ... , (e, BP)])sets 

= L L ... L 2~P J [ IT p(BIl) dBIl] f[(e, B1), (e, B2), ... ,(e, BP)] 
e1 e e tL=l 

where e E {-I, l}N. We normalise B* so that [B*]2 = 1 and choose the time unit 
t = miN. We finally assume that J o and B* are statistically independent of the 
training vectors ell, and that they obey Ji(O), B; = O(N-~) for all i. 

3 Explicit Microscopic Expressions 

At the m-th stage of the learning process the two simple scalar observables Q[J] = 
J2 and R[J] = B* . J, and the joint distribution of fields x = J . e, y = B* . e, z = 
B . e (calculated over the questions in the training set D), are given by 

Q[J(m)] = J2(m) R[J(m)] = B* . J(m) (5) 

1 P 
Pix, y, z; J(m)] = - L o[x - J(m) . e] o[y - B* . ell] o[z - Bil . ell] (6) 

p 11=1 

For infinitely large systems one can prove that the fluctuations in mean-field ob­
servables such as {Q, R, P}, due to the randomness in the dynamics, will vanish [6]. 
Furthermore one assumes, with convincing support from numerical simulations, that 
for N -r (Xl the evolution of such observables, observed for different random realisa­
tions of the training set, will be reproducible (i.e. the sample-to-sample fluctuations 
will also vanish, which is called 'self-averaging'). Both properties are central ingre­
dients of all current theories. We are thus led to the introduction of the averages of 
the observables in (5,6), with respect to the dynamical randomness and with respect 
to the randomness in the training set (to be carried out in precisely this order): 

Q(t) = lim ( (Q[J(tN))) )set.s 
N-+oo 

R(t) = lim ( (R[J(tN)]) )sets 
N-+oo 

Pt(x,y,z) = lim «P[x,y,z;J(tN)]) )sets 
N-+oo 

( 7) 

(8) 

A fundamental ingredient of our calculations will be the average (~i sgn(B ·e))(e , B), 

calculated over all realisations of (e, B). We find, for a wide class of p(B), that 

(9) 

where, for example, 
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P = if (1-2>.) 

P_ f!. 1 
- V -; V1 + 'f,2 

(output noise) 

(Gaussian input noise) 

4 Averages of Simple Scalar Observables 

3/9 

(10) 

(11) 

Calculation of Q(t) and R(t) using (4, 5, 7, 9) to execute the path average and the 
average over sets is relatively straightforward, albeit tedious. We find that 

-"Yt(l -"Yt) 2 
Q(t) = e-2""(tQo + 21}PRo e -e + ~(1_e-2"Yt) 

"( 2, 
(1_e- "Yt)2 1 

+1}2 (_+p2) (12) 
"(2 a 

and that 
(13) 

where p is given by equations (10, 11) in the examples of output noise and Gaussian 
input noise, respectively. We note that the generalisation error is given by 

Eg = ~arccos [R(t)/v'Q(t)] (14) 

All models of the teacher noise which have the same p will thus have the same 
generalisation error at any time. This is true, in particular, of output noise and 
Gaussian input noise when their respective parameters>. and 'f, are related by 

1 - 2>' = 1 (15) 
V1 + 'f,2 

With each type of teacher noise for which (9) holds, one can thus associate an 
effective output noise parameter >.. Note, however, that this effective teacher error 
probability>. will in general not be identical to the true teacher error probability 
associated with a given p(B), as can immediately be seen by calculating the latter 
for the Gaussian input noise (2). 

5 Average of the Joint Field Distribution 

The calculation of the average of the joint field distribution starting from equation 
(8) is more difficult. Writing a = (l-,IN) , and expressing the 6 functions in terms 
of complex exponentials, we find that 

P, (x y z) = jdidydZ ei(xHyy+zi) lim (e-i[xe-"YtJo ·el+i;B · .e+zBl.el] 
t , , 871"3 N-400 

X fi:[~ te-[i1)XN- 1 /TtN-t(e 1 f') sg~(B""f')l]) (16) 

£=0 p v=l sets 
In this expression we replace e 1 bye and Bl by B, and abbreviate S = I1~~0[' ·l 
Upon writing the latter product in terms of the auxiliary variables Vv = (e1 ·eV ) I IN 
and Wv == B V • C, we find that for large N 

. A 2 A2 

logS", X(x sgn[B· e],t) - t1}XUl (l_e - "Yt) _ 1} x u2(1_e-2"Y t ) (17) 
"( 4"( 

where Ul, U2 are the random variables given by 
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1 '""' 1 '""' 2 Ul = .jN ~ Vv sgn(wv ), U2 = - ~ Vv . 

a N v>l P v>l 

1 it [-Y(.-t)] X(w, t) = - ds [e- 11]We - 1] 
a 0 

and with 
(18) 

A study of the statistics of Ul and U2 shows that limN --700 U2 = 1, and that 

(N ~ 00), 

where U is a Gaussian random variable with mean equal to zero and variance unity. 
On the basis of these results and equations (16, 17) we find that 

P, (x y z) = jdXdfjdi ei(x:Hyy+==)_~x2[Q-R2- e -2-yt(Qo-R6)]+ ~dx sgn [=] ,t) -ixy(R-Roe-> ' ) 
t , , 87f3 

(19) 

where Q and R are given by the expressions (12,13) (note: Q - R2 is independent 
of p, i.e. of the distribution p(B)). Let Xo = J o .~, y = B* .~, z = B . ~. 
We assume that, given y, z is independent of Xo. This condition, which reflects in 
some sense the property that the teacher noise preserves the perceptron structure. 
is certainly satisfied for the models which we are considering and is probably true 
of all reasonable noise models. The joint probability density then has the form 
p( Xo, y, z) = p( Xo J Y )p(y , z). Equation (19) then leads to the following expression for 
the conditional probability of x, given y and z: 

P,t(xJy, z) = j ~! eiX[x-Ry]-~x2[Q-R2J+x(x sgn[z),t) (20) 

We observe that this probability distribution is the same for all models with the 
same p and that the dependence on z is through r = sgn[ z], a directly observable 
quantity. The training error and the student field probability density are given by 

E tr = j dxdy L B( -xr)P,t (xJy , r)P(rJy)P,(y) 
T=±l 

(21 ) 

P,t(x) = j dy L P,t(xJy, r)P,(rJy)P(y) 
T=±l 

(22) 

1 1 2 
in which P,(y) = (27f)-2e- 2Y . We note that the dependence of Etr and P,t{x) on 
the specific noise model arises solely through P,( rJy) which we find is given by 

P(rJy) = )"B( -ry) + (1 - )..)B(ry) 
1 

P{rJy) = 2(1 + rerf[y/J2~]) 

in the output noise and Gaussian input noise models, respectively. In order to sim­
plify the numerical computation of the remaining integrals one can further reduce 
the number of integrations analytically. Details will be reported elsewhere. 

6 Comparison with Numerical Simulations 

It will be clear that there is a large number of parameters that one could vary in 
order to generate different simulation experiments with which to test our theory. 
Here we have to restrict ourselves to presenting a number of representative results. 
Figure 1 shows, for the output noise model, how the probability density Pdx) of 
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Figure 1: Student field distribution P(x) for the case of output noise, at different 
times (left to right: t= 1,2,3,4), for a=,=~, 10 =1}= 1, A=0.2. Histograms: 
distributions measured in simulations, (N = 10,000). Lines: theoretical predictions. 

the student field x = J . ~ develops in time, starting as a Gaussian at t = 0 
and evolving to a highly non-Gaussian distribution with a double peak by time 
t = 4. The theoretical results give an extremely satisfactory account of the numerical 
simulations . Figure 2 compares our predictions for the generalisation and training 
errors Eg and E tr with the results of numerical simulations, for different initial 
conditions, Eg(O) = 0 and Eg(O) = 0.5, and for different choices of the two most 
important parameters A (which controls the amount of teacher noise) and a (which 
measures the relative size of the training set). The theoretical results are again in 
excellent agreement with the simulations. The system is found to have no memory of 
its past (which will be different for some other learning rules), the asymptotic values 
of Eg and Etr being independent of the initial student vector. In our examples Eg is 
consistently larger than Etr , the difference becoming less pronounced as a increases. 
Note, however, that in some circumstances E tr can also be larger then E g . Careful 
inspection shows that for Hebbian learning there are no true overfitting effects, not 
even in the case of large A and small, (for large amounts of teacher noise, without 
regularisation via weight decay). Minor finite time minima of the generalisation 
error are only found for very short times (t < 1), in combination with special 
choices for parameters and initial conditions. 

7 Discussion 

Starting from a microscopic description of Hebbian on-line learning in perceptrons 
with restricted training sets, of size p = aN where N is the number of inputs, 
we have developed an exact theory in terms of macroscopic observables which has 
enabled us to predict the generalisation error and the training error, as well as the 
probability density of the student local fields in the limit N ~ 00. Our results are in 
execellent agreement with numerical simulations (as carried out for systems of size 
N = 5,000) in the case of output noise; our predictions for the Gaussian input noise 
model are currently being compared with the results of simulations. Generalisations 
of our calculations to scenarios involving, for instance, time-dependent learning 
rates or time-dependent decay rates are straightforward. Although it will be clear 
that our present calculations cannot be extended to non-Hebbian rules, since they 
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Figure 2: Generalisation errors (diamonds/lines) and training errors (circles/li.nes) 
as observed during on-line Hebbian learning, as functions of time. Upper two graphs: 
A = 0.2 and a E {0.5,4.0} (upper left: Eg(O) = 0.5, upper right: Eg(O) = 0). Lower 
two graphs: a = 1 and A E {O.O, 0.25} (lower left: Eg(O) = 0.5. lower right: 
Eg(O) = 0.0). Markers: simulation results for an N = 5,000 system. Solid lines: 
predictions of the theory. In all cases Jo = 'f} = 1 and 'Y = 0.5 . 

ultimately rely on our ability to write down the microscopic weight vector J at 
any time in explicit form (4), they do indeed provide a significant yardstick against 
which more sophisticated and more general theories can be tested. In particular. 
they have already played a valuable role in assessing the conditions under which a 
recent general theory of learning with restricted training sets, based on a dynamical 
version of the replica formalism, is exact [6, 7]. 
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