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Abstract 

We present a method for learning complex appearance mappings. such 
as occur with images of articulated objects. Traditional interpolation 
networks fail on this case since appearance is not necessarily a smooth 
function nor a linear manifold for articulated objects. We define an ap­
pearance mapping from examples by constructing a set of independently 
smooth interpolation networks; these networks can cover overlapping re­
gions of parameter space. A set growing procedure is used to find ex­
ample clusters which are well-approximated within their convex hull; 
interpolation then proceeds only within these sets of examples. With this 
method physically valid images are produced even in regions of param­
eter space where nearby examples have different appearances. We show 
results generating both simulated and real arm images. 

1 Introduction 

Image-based view synthesis is.an important application of learning networks. offering the 
ability to render realistic images without requiring detailed models of object shape and 
illumination effects. To date. much attention has been given to the problem of view synthe­
sis under varying camera pose or rigid object transformation. Several successful solutions 
have been proposed in the computer graphics and vision literature. including view morph­
ing [12], plenoptic modeling/depth recovery [8], "lightfields" [7], and recent approaches 
using the trifocal tensor for view extrapolation [13]. 

For non-rigid view synthesis. networks for model-based interpolation and manifold learn­
ing have been used successfully in some cases [14. 2. 4. 11]. Techniques based on Radial 
Basis Function (RBF) interpolation or on Principle Components Analysis (peA), have been 
able to interpolate face images under varying pose. expression and identity [1.5, 6]. How-



Example-Based Image Synthesis of Articulated Figures 769 

extends the notion of example clustering to the case of coupled shape and texture appear­
ance models. 

Our basic method is to find sets of examples which can be well-approximated from their 
convex hull in parameter space. We define a set growing criterion which enforces com­
pactness and the good-interpolation property. To add a new point to an example set, we 
require both that the new point must be well approximated by the previous set alone and 
that all interior points in the resulting set be well interpolated from the exterior examples. 
We define exterior examples to be those on the convex hull of the set in parameter space. 
Given a training subset s C 0 and new point p E 0, 

E(s,p) = max(E/(s U {p}),EE(S,p)) , 

with the interior and extrapolation error defined as 

1ix (s) is the subset of s whose x vectors lie on the convex hull of all such vectors in s. To 
add a new point, we require E < E, where E is a free parameter of the clustering method. 

Given a seed example set, we look to nearest neighbors in appearance space to find the next 
candidate to add. Unless we are willing to test the extrapolation error of the current model 
to all points, we have to rely on precomputed non-vectorized appearance distance (e.g., 
MSE between example images). If the examples are sparse in the appearance domain, this 
may not lead to effective groupings. 

If examples are provided in sequence and are based on observations from an object with 
realistic dynamics, then we can find effective groupings even if observations are sparse in 
appearance space. We make the assumption that along the trajectory of example observa­
tions over time, the underlying object is likely to remain smooth and locally span regions of 
appearance which are possible to interpolate. We thus perform set growing along examples 
on their input trajectory. Specifically, in the results reported below, we select K seed points 
on the trajectory to form initial clusters. At each point p we find the set s which is the 
smallest interval on the example trajectory which contains p, has a non-zero interior region 
(s -1ix (s)), and for which E / (s) < €. If such set exists, we continue to expand it, growing 
the set along the example trajectory until the above set growing criterion is violated. Once 
we can no longer grow any set, we test whether any set is a proper subset of another, and 
delete it if so. We keep the remaining sets, and use them for interpolation as described 
below. 

4 Synthesis using example sets 
We generate new views using sets of examples: interpolation is restricted to only occur 
inside the convex hull of an example set found as above for which E/(s) ::; E. Given a new 
parameter vector x, we test whether it is in the convex hull of parameters in any example 
set. If the point does not lie in the convex hull of any example set, we find the nearest point 
on the convex hull of one of the example sets, and use that instead. This prevents erroneous 
extrapolation. 

If a new parameter is in the convex hull of more than one example set, we first select the 
set whose median example parameter is closest to the desired example parameter. Once a 
set has been selected, we interpolate a new function value from examples using the RBF 
method summarized above. To enforce temporal consistency of rendered images over time, 
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Figure 2: (a) Images of a real arm (from a sequence of 33 images) with changing appear­
ance and elbow configuration. (b,c) Interpolated shape of arms tracked in previous figure. 
(b) shows results using all examples in a single interpolation network; (c) shows results 
using example sets algorithm. Open contours show arms example locations; filled con­
tour shows interpolation result. Near regions of appearance singularity in parameter space 
the full network method generates physically-invalid arm shapes; the example sets method 
produces realistic images. 

The method presented below for grouping examples into locally valid spaces is generally 
applicable to both the PCA and RBF-based view synthesis techniques. However our initial 
implementation, and the results reported in this paper, have been with RBF-based models. 

3 Finding consistent example sets 

Given examples from a complicated (non-linear, non-smooth) appearance mapping, we find 
local regions of appearance which are well-behaved as smooth, possibly linear, functions. 
We wish to cluster our examples into sets which can be used for successful interpolation 
using our local appearance mode\. 

Conceptually, this problem is similar to that faced by Bregler and Omohundro [2], who 
built image manifolds using a mixture of local PCA models. Their work was limited to 
modeling shape (lip outlines); they used K-means clustering of image appearance to form 
the initial groupings for PCA analysis. However this approach had no model of texture and 
performed clustering using a mean-squared-error distance metric in simple appearance. 
Simple appearance clustering drastically over-partitions the appearance space compared to 
a model that jointly represent shape and texture. Examples which are distant in simple 
appearance can often be close when considered in 'vectorized' representation. Our work 
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Figure 1: Arm appearance interpolated from examples using approximation network. (a) 
A 2DOF planar arm. Discontinuities in appearance due to workspace constraints make 
this a difficult function to learn from examples; the first and last example are very close 
in parameter space, but far in appearance space. (b) shows results using all examples 
in a single network; (c) using the example sets algorithm described in text. Note poor 
approximation on last two examples in (a); appearance discontinuities and extrapolation 
cause problems for full network, but are handled well in examples sets method. 

In peA-based approaches, G projects a portion of u onto a optimal linear subspace found 
from D, and F projects a portion of u onto a subspace found from T [6, 5]. For example 
G D (u) = PI) 59 U , where 59 is a diagonal boolean matrix which selects the texture param­
eters from u and PI) is a matrix containing the m-th largest principle components of D. 
F warps the reconstructed texture according to the given shape: FT(u, s) = [PT5t u] 0 s. 
While interpolation is simple using a peA approach, the parameters used in peA models 
often do not have any direct physical interpretation. For the task of view synthesis, an ad­
ditional mapping u = H(x) is needed to map from task parameters to peA input values; 
a backpropogation neural net was used to perform this function for the task of eye gaze 
analysis [10]. 

Using the RBF-based approach [1], the application to view synthesis is straightforward. 
Both G and F are networks which compute locally-weighted regression, and parameters 
are used directly (u = x) . G computes an interpolated shape, and F warps and blends the 
example texture images according to that shape: G D(X) = Ei cd(x - xd, FT(X, s) = 
[Ei cU(x - Xi)] os , where f is a radial basis function. The coefficients c and c' are derived 
from D and T, respectively: C = D R+ , where rij = f (x i-X j) and C is the matrix of row 
vectors Ci; similarly C' = T R+ [9] . We have found both vector norm and Gaussian basis 
functions give good results when appearance data is from a smooth function; the results 
below use f(r) = Ilrll. 
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ever, these methods are limited in the types of object appearance they can accurately model. 
PCA-based face analysis typically assumes images of face shape and texture fall in a linear 
subspace; RBF approaches fare poorly when appearance is not a smooth function. 

We want to extend non-rigid interpolation networks to handle cases where appearance is 
not a linear manifold and is not a smooth function, such as with articulated bodies. The 
mapping from parameter to appearance for articulated bodies is often one-to-many due to 
the multiple solutions possible for a given endpoint. It will also be discontinuous when 
constraints call for different solutions across a boundary in parameter space, such as the 
example shown in Figure 1. 

Our approach represents an appearance mapping as a set of piecewise smooth functions. 
We search for sets of examples which are well approximated by the examples on the convex 
hull of the set's parameter values. Once we have these 'safe' sets of examples we perform 
interpolation using only the examples in a single set. 

The clear advantage of this approach is that it will prevent inconsistent examples from 
being combined during interpolation. It also can reduce the number of examples needed to 
fully interpolate the function, as only those examples which are on the convex hull of one 
or more example sets are needed. If a new example is provided and it falls within and is 
well-approximated by the convex hull of an existing set, it can be safely ignored. 

The remainder of this paper proceeds as follows. First, we will review methods for mod­
eling appearance when it can be well approximated with a smooth and/or linear function. 
Next, we will present a technique for clustering examples to find maximal subsets which 
are well approximated in their interior. We will then detail how we select among the subsets 
during interpolation, and finally show results with both synthetic and real imagery. 

2 Modeling smooth and/or linear appearance functions 
Traditional interpolation networks work well when object appearance can be modeled ei­
ther as a linear manifold or as a smooth function over the parameters of interest (describing 
pose, expression, identity, configuration, etc.). As mentioned above, both peA and RBF 
approaches have been successfully applied to model facial expression. 

In both approaches, a key step in modeling non-rigid shape appearance from examples is 
to couple shape and texture into a single representation. Interpolation of shape has been 
well studied in the computer graphics literature (e.g., splines for key-frame animation) but 
does not alone render realistic images. PCA or RBF models of images without a shape 
model can only represent and interpolate within a very limited range of pose or object 
configuration. 

In a coupled representation, texture is modeled in shape-normalized coordinates, and shape 
is modeled as disparity between examples or displacement from a canonical example to all 
examples. Image warping is used to generate images for a particular texture and shape. 
Given a training set n = {(Yi, Xi, di ), 0 ~ i ~ n}, where Yi is the image of example i, 
Xi is the associated pose or configuration parameter, and di is a dense correspondence map 
relative to a canonical pose, a set of shape-aligned texture images can be computed such 
that texture ti warped with displacement di renders example image Yi: Yi = ti 0 di [5, 1,6]. 
A new image is constructed using a coupled shape model G and texture model F, based on 
input u: 

y(n,U) = FT(GD(U),u) , 

where D, T are the matrices [dodl ... dn ], [totl ... t n ], respectively. 
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Figure 3: Interpolated shape and texture result. (a) shows exemplar contours (open) and 
interpolated shape (filled). (b) shows example texture images. (c) shows final interpolated 
image. 
we can use a simple additional constraint on subsequent frames. Once we have selected 
an example set, we keep using it until the desired parameter value leaves the valid region 
(convex hull) of that set. When this occurs, we allow transitions only to "adjacent" example 
sets; adjacency is defined as those pairs of sets for which at least one example on each 
convex hull are sufficiently close (11Yi - Yj II < E) in appearance space. 

S Results 
First we show examples using a synthetic arm with several workspace constraints. Figure 
l(a) shows examples of a simple planar 2DOF ann and the inverse kinematic solution for a 
variety of endpoints. Due to an artificial obstacle in the world, the ann is forced to switch 
between ann-up and ann-down configurations to avoid collision. 

We trained an interpolation network using a single RBF to model the appearance of the ann 
as a function of endpoint location. Appearance was modeled as the vector of contour point 
locations, obtained from the synthetic ann rendering function. We first trained a single RBF 
network on a dense set of examples of this appearance function. Figure l(b) shows results 
interpolating new ann images from these examples; results are accurate except where there 
are regions of appearance discontinuity due to workspace constraints, or when the network 
extrapolates erroneously. 

We applied our clustering method described above to this data, yielding the results shown 
in Figure 1 (c). None of the problems with discontinuities or erroneous extrapolation can 
be seen in these results, since our method enforces the constraint that an interpolated result 
must be returned from on or within the convex hull of a valid example set. 

Next we applied our method to the images of real anns shown in Figure 2(a). Ann contours 
were obtained in a sequence of 33 such images using a semi-automated defonnable contour 
tracker augmented with a local image distance metric [3]. Dense correspondences were in­
terpolated from the values on the contour. Figure 2(b) shows interpolated ann shapes using 
a single RBF on all examples; dramatic errors can be seen near where multiple different 
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appearances exist within a small region of parameter space. 

Figure 2( c) shows the results on the same points using sets of examples found using our 
clustering method; physically realistic arms are generated in each case. Figure 3 shows the 
final interpolated result rendered with both shape and texture. 

6 Conclusion 
View-based image interpolation is a powerful paradigm for generating realistic imagery 
without full models of the underlying scene geometry. Current techniques for non-rigid 
interpolation assume appearance is a smooth function. We apply an example clustering 
approach using on-line cross validation to decompose a complex appearance mapping into 
sets of examples which can be smoothly interpolated. We show results on real imagery 
of human arms, with correspondences recovered from deformable contour tracking. Given 
images of an arm moving on a plane with various configuration conditions (elbow up and 
elbow down), and with associated parameter vectors marking the hand location, our method 
is able to discover a small set of manifolds with a small number of exemplars each can 
render new examples which are always physically correct. A single interpolating manifold 
for this same data has errors near the boundary between different arm configurations, and 
where multiple images have the same parameter value. 
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