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Abstract 

Gaussian process (GP) prediction suffers from O(n3) scaling with the 
data set size n. By using a finite-dimensional basis to approximate the 
GP predictor, the computational complexity can be reduced. We de­
rive optimal finite-dimensional predictors under a number of assump­
tions, and show the superiority of these predictors over the Projected 
Bayes Regression method (which is asymptotically optimal). We also 
show how to calculate the minimal model size for a given n. The 
calculations are backed up by numerical experiments. 

1 Introduction 

Over the last decade there has been a growing interest in the Bayesian approach to 
regression problems, using both neural networks and Gaussian process (GP) prediction, 
that is regression performed in function spaces when using a Gaussian random process 
as a prior. 

The computational complexity of the GP predictor scales as O(n3), where n is the size 
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of the datasetl . This suggests using a finite-dimensional approximating function space, 
which we will assume has dimension m < n. The use of the finite-dimensional model is 
motivated by the need for regression algorithms computationally cheaper than the G P 
one. Moreover, GP regression may be used for the identification of dynamical systems 
(De Nicolao and Ferrari Trecate, 1998), the next step being a model-based controller 
design. In many cases it is easier to accomplish this second task if the model is low 
dimensional. 

Use of a finite-dimensional model leads naturally to the question as to which basis is 
optimal. Zhu et al. (1997) show that, in the asymptotic regime, one should use the 
first m eigenfunctions of the covariance function describing the Gaussian process. We 
call this method Projected Bayes Regression (PBR) . 

The main results of the paper are: 

1. Although PBR is asymptotically optimal, for finite data we derive a predictor 
hO(x) with computational complexity O(n2m) which outperforms PBR, and 
obtain an upper bound on the generalization error of hO(x) . 

2. In practice we need to know how large to make m . We show that this depends 
on n and provide a means of calculating the minimal m. We also provide 
empirical results to back up the theoretical calculation. 

2 Problem statement 

Consider the problem of estimating an unknown function f(x) : JRd -T JR, from the 
noisy observations 

ti = f(Xi) + Ei, i = 1, ... , n 

where Ei are i.i.d. zero-mean Gaussian random variables with variance a2 and the 
samples Xi are drawn independently at random from a distribution p(x) . The prior 
probability measure over the function f (.) is assumed to be Gaussian with zero mean 
and autocovariance function C (6,6). Moreover we suppose that f (.), Xi, Ei, are 
mutually independent. Given the data set 'Dn = {x , f}, where x = [Xl' . .. ' Xn] and 
f = [tl, ... , tn]', it is well known that the posterior probability PUI'Dn) is Gaussian 
and the GP prediction can be computed via explicit formula (e.g. Whittle, 1963) 

j(x) = E[JI'Dn](x) = [C(x, xd C(x , Xn)] H - lf, {H} ij ~C(Xi ' Xj) + a20ij 

where H is a n x n matrix and Oij is the Kronecker delta. 

In this work we are interested in approximating j in a suitable m-dimensional space 
that we are going to define. Consider the Mercer-Hilbert expansion of C(6, 6) 

r C(6,6)'Pi(6)p(6)d6 = Ai'Pi(6), r 'Pi(~)'Pj(Op(~)d~ = Oij (1) iRd iRd 
+00 

C(6,6) = L Ai'Pi(6)'Pi(6), 
i=l 

where the eigenvalues Ai are ordered in a decreasing way. 

Then, in (Zhu et al., 1997) is shown that, at least asymptotically, the optimal model 
belongs to M = Span { 'Pi, i = 1, ... , m}. This motivates the choice of this space even 
when dealing with a finite amount of data. 

Now we introduce the finite-dimensional approximator which we call Projected Bayes 
Regression. 

lO(n3) arises from the inversion of a n x n matrix. 
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Definition 1 The PBR approximator is b(x) = k' (x)w, where w=,8A-1iJ>'f, ,8=1/(12, 

A = (A -1 + ,8iJ>' iJ» , (A)ij=Ai6ij and 

k(x)= [~I{X) l' iJ>= 

rpm (x) 

The name PBR comes from the fact that b(x) is the GP predictor when using the 
mis-specified prior 

(2) 
i=1 

whose auto covariance function is the projection of C(6,6) on M. From the compu­
tational point of view, is interesting to note that the calculation of PBR scales with 
the data as O(m2 n), assuming that n » m (this is the cost of computing the matrix 
product A-I iJ>'). 

Throughout the paper the following measures of performance will be extensively used. 

Definition 2 Let s{x) be a predictor that uses only information from Dn. Then its 
x-error and generalization error are respectively defined as 

Es(n,x)=Et.,x.,l [(t* - s(x*))2] , EHn)=Ex [Es{n,x)]. 

An estimator SO(x) belonging to a class 11. is said x-optimal or simply optimal if, re­
spectively, Eso(n,x) ~ Es{n,x) or E;o(n) ~ E~(n), for all the s(x) E 11. and the data 
sets x. 

Note that x-optimality means optimality for each fixed vector x of data points. Obvi­
ously, if SO(x) is x-optimal it is also simply optimal. These definitions are motivated by 
the fact that for Gaussian process priors over functions and a predictor s that depends 
linearly on 1, the computation of Es(n, x) can be carried out with finite-dimensional 
matrix calculations (see Lemma 4 below), although obtaining Ei{n) is more difficult, 
as the average over x is usually analytically intractable. 

3 Optimal finite-dimensional models 

We start considering two classes of linear approximators, namely 

11.1 = {g(x) = k' (x)LIJL E jRmxn} and 11.2= {h(x) = k' (x)FiJ>'IJF E jRmxm}, where 

the matrices Land F are possibly dependent on the Xi samples. We point out that 
11.2 C 11.1 and that the PBR predictor b(x) E 11.2. Our goal is the characterization of 
the optimal predictors in 11.1 and 11.2. Before stating the main result, two preliminary 
lemmas are given. The first one is proved in (Pilz, 1991) while the second follows from 
a straightforward calculation. 

Lemma 3 Let A E jRnxn, BE jRnxr, A> O. Then it holds that 

inf Tr [(ZAZ' - ZB - B' Z')] = Tr [-B' A-I B] 
ZERrxn 

and the minimum is achieved for the matrix Z* = B' A-I . 

Lemma 4 Let g(x) E 11. 1 • Then it holds that 
+00 

Eg(n,x) = LAi + (12 + q{L), q(L)=Tr [LHL' - 2LiJ>A]. 
i=1 
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Proof. In view of the x-error definition, setting r( x*) 
[C(x*, xd C(x*, xn )]' ,it holds 

Et< ,t [(t* - k' (x*)U)2] (12 + C(X*, X*) + k' (x*)LH L' k(x*) 

-2k' (x*)Lr(x*) (3) 

(12 + C(x*, x*) 

+Tr [LHL'k(x*)k' (x*) - 2Lr(x*)k' (x*)] . 

Note that Ex< [k(x*)k' (x*)] = fm, Ex' [r(x*)k' (x*)] = «I> A , and, from the Mercer­

Hilbert expansion (1), Ex' [C(x*, x*)] = I:~~ Ai· Then, taking the mean of (3) w.r.t. 
x*, the result follows.D 

Theorem 5 The predictors gO(x) E 11.1 given by L = £0 = A«I>' H- 1 and hO(x) E 11.2 
given by F = FO = A«I>' «1>(<<1>' H«I»-I, Vn 2: m, are x-optimal. Moreover 

+00 
Ego(n,x) = LAi+(12-Tr[A«I>'H-1«1>A] (4) 

i=1 

+00 
L Ai + (12 - Tr [A«I>' «1>(<<1>' H«I»-I«I>' «I>A] 
i=1 

Proof. We start considering the gO(x) case. In view of Lemma 4 we need only to 
minimize q(L) w.r.t. to the matrix L. By applying Lemma 3 with B = «I>A, A = H > 0, 
Z = L, one obtains 

argmlnq(L)=Lo = A«I>'H-1 mlnq(L) = -Tr [A«I>'H- 1«1>A] (5) 

so proving the first result . For the second case, we apply Lemma 4 with L = F«I>' and 
then perform the minimization of q(F«I>'), w.r.t. the matrix F. This can be done as 
before noting that «1>' H-I«I> > 0 only when n 2: m. 0 

Note that the only difference between gO(x) and the GP predictor derives from the 
approximation of the fUnctions C(x, Xk) with I::l Ai'Pi(X)'Pi(Xk) . Moreover the com­
plexity of gO (x) is O(n3) the same of j(x). On the other hand hO(x) scales as O(n2m), 
so having a computational cost intermediate between the GP predictor and PBR. Intu­
itively, the PBR method is inferior to hO as it does not take into account the x locations 
in setting up its prior. We can also show that the PBR predictor b(x) and hO(x) are 
asymptotically equivalent. 

l,From (4) is clear that the explicit evaluations of E%o(n) and Eho(n) are in 
general very hard problems, because the mean w.r.t. the Xi samples that 
enters in the «I> and H matrices. In the remainder of this section we 
will derive an upper bound on Eho(n). Consider the class of approximators 

11.3= {u(x) = k' (x) D «1>' ~D E ffi.mxm , (D)ij = di6ij }. Because of the inclusions 11.3 C 

11.2 C 11.1 , if UO(x) is the x-optimal predictor in 11.3, then Ego(n) ::; Eho(n) ::; E;o(n). 
Due the diagonal structure of the matrix D, an upper bound to E~o (n) may be expli­
citly computed, as stated in the next Theorem. 

Theorem 6 The approximator UO(x) E 11.3 given by 

(<<I>' «I> A) . 
(D)ij = (DO)ij = (<<I>' H«I»:: 6ij , (6) 
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is x-optimal. Moreover an upper-bound on its generalization error is given by 

+= m 
Ak 

E;o < L Ai + (J2 - n L qkAk, qk =- (7) 
i=l k=l Ck 

Ck (n -l)Ak + J C(x,x)cp~(x)p(x)dx +(J2. 

Proof. In order to find the x-optimal approximator in 11.3 , we start applying the 
Lemma 4 with L = Dq,'. Then we need to minimize 

(8) 

w.r.t. di so obtaining (6). To bound E;o(n), we first compute the generalization error 

of a generic approximation u(x) that is EZ = Ex [q(Dq,')] + L~~ Ai + (J2. After 

verifying that 

we obtain from (8), assuming the di constant, 

+= m m 

E~ = L Ai + (J2 + n L d;Ci - 2n L diAi. 
i=l i=l i=l 

Minimizing EZ w.r.t. di , and recalling that UO(x) is also simply optimal the formula 
(7) follows.O When C(6, 6) is stationary, the expression of the Ci coefficient becomes 
simply Ci = (n - l)Ai + L~~ Ai + (J2 . 

Remark : A naive approach to estimating the coefficients in the estimator 
L~lWi¢i(X) would be to set Wi = n- 1 (q,'t)i as an approximation to the integral 
Wi = f ¢i(x)f(x)p(x)dx. The effect of the matrix D is to "shrink" the wi's of the 
higher-frequency eigenfunctions. If there was no shrinkage it would be necessary to 
limit m to stop the poorly-determined Wi'S from dominating, but equation 7 shows 
that in fact the upper bound is improved as m increases. (In fact equation 7 can be 
used as an upper bound on the GP prediction error; it is tightest when m ~ 00.) This 
is consistent with the idea that increasing m under a Bayesian scheme should lead to 
improved predictions. In practice one would keep m < n, otherwise the approximate 
algorithm would be computationally more expensive than the O(n3) GP predictor. 

4 Choosing m 

For large n, we can show that 

(9) 

where b(x) is the PBR approximator of Definition 1. (This arises because the matrix 
q,/q, becomes diagonal in the limit n ~ 00 due to the orthogonality of the eigenfunc­
tions.) 

In equation 9, the factor (Ail + ,Bn)-l indicates by how much the prior variance of 
the ith eigenfunction ¢i has been reduced by the observation of the n datapoints. 
(Note that this expression is exactly the same as the posterior variance of the mean 
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Figure 1: (a) E~o(n) and detaching points for various model orders. Dashed: m = 3, 
dash-dot: m = 5, dotted: m = 8, solid: Ejen). (b) Eg(n) - E~o (n) plotted against n. 

of a Gaussian with prior N(O , Ai) given n observations corrupted by Gaussian noise 
of variance {3-1 .) For an eigenfunction with Ai » 0-2 In, the posterior is considerably 
tighter than the prior, but when Ai « 0-2 In, the prior and posterior have almost the 
same width , which suggests that there is little point in including these eigenfunctions 
in the finite-dimensional model. By omitting all but the first m eigenfunctions we add 
a term L~m+1 Ai to the expected generalization error. 

This means that for a finite-dimensional model using the first m eigenfunctions, we 
expect that Eg(n) ~ Ej(n) up to a training set size n determined by n = 1/({3Am). 

We call n the detatching point for the m-dimensional approximator. Conversely, in 
practical regression problems the data set size n is known. Then, from the knowledge 
of the auto covariance eigenvalues, is possible to determine, via the detatching points 
formula, the order m of the approximation that should be used in order to guarantee 
Eho (n) ~ Ej(n). 

5 Experimental results 

We have conducted experiments using the prior covariance function C(6,6) = (1 + 
h)e-h where h = 16 - 61/p· with p = 0.1. This covariance function corresponds 
to a Gaussian process which is once mean-squared differentiable, It lies in the family 
of stationary covariance functions C(h) = hV Kv(h) (where Kv(-) is a modified Bessel 
function) , with v = 3/2. The eigenvalues and eigenfunctions of this covariance kernel 
for the density p(x) '" U(O, 1) have been calculated in Vivarelli (1998). 

In our first experiment (using 0- 2 = 1) the learning curves of b(x), hO(x) and i(x) were 
obtained; the average over the choice of training data sets was estimated by using 100 
different x samples. It was noticed that Eg (n) and Eho (n) practically coincide, so only 
the latter curve is drawn in the pictures. 

In Figure l(a) we have plotted the learning curves for GP regression and the ap­
proximation hO(x) for various model orders. The corresponding detaching points are 
also plotted, showing their effectiveness in determining the size of data sets for which 
E~o (n) ~ Ej(n). The minimum possible error attainable is (J2 = 1.0 For finite-

dimensional models this is increased by L~m+l Ai; these "plateaux" can be clearly 
seen on the right hand side of Figure l(a). 
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Our second experiment demonstrates the differences in performance for the hO(x) and 
b(x) estimators, using (72 = 0.1. In Figure 1(b) we have plotted the average difference 
Eg(n) - Eho(n). This was obtained by averaging Eb(n,x) - Eho(n,x) (computed with 
the same x, i.e. a paired comparison) over 100 choices of x, for each n. Notice that 
hO is superior to the PBR estimator for small n (as expected), but that they are 
asymptotically equivalent. 

6 Discussion 

In this paper we have shown that a finite-dimensional predictor hO can be construc­
ted which has lower generalization error than the PBR predictor. Its computational 
complexity is O(n2m), lying between the O(n3 ) complexity of the GP predictor and 
O(m2 n) complexity of PBR. We have also shown how to calculate m, the number of 
basis functions required, according to the data set size. 

We have used finite-dimensional models to approximate GP regression. An interesting 
alternative is found in the work of Gibbs and MacKay (1997), where approximate 
matrix inversion methods that have O(n2 ) scaling have been investigated. It would be 
interesting to compare the relative merits of these two methods. 
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