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Abstract 

This paper introduces a method for regularization ofHMM systems that 
avoids parameter overfitting caused by insufficient training data. Regu­
larization is done by augmenting the EM training method by a penalty 
term that favors simple and smooth HMM systems. The penalty term 
is constructed as a mixture model of negative exponential distributions 
that is assumed to generate the state dependent emission probabilities of 
the HMMs. This new method is the successful transfer of a well known 
regularization approach in neural networks to the HMM domain and can 
be interpreted as a generalization of traditional state-tying for HMM sys­
tems. The effect of regularization is demonstrated for continuous speech 
recognition tasks by improving overfitted triphone models and by speaker 
adaptation with limited training data. 

1 Introduction 

One general problem when constructing statistical pattern recognition systems is to ensure 
the capability to generalize well, i.e. the system must be able to classify data that is not 
contained in the training data set. Hence the classifier should learn the true underlying data 
distribution instead of overfitting to the few data examples seen during system training. 
One way to cope with the problem of overfitting is to balance the system's complexity and 
flexibility against the limited amount of data that is available for training. 

In the neural network community it is well known that the amount of information used in 
system training that is required for a good generalization performance should be larger than 

,the number of adjustable weights (Baum, 1989). A common method to train a large size 
neural network sufficiently well is to reduce the number of adjustable parameters either 
by removing those weights that seem to be less important (in (Ie Cun, 1990) the sensitiv­
ity of individual network weights is estimated by the second order gradient) or by sharing 
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the weights among many network connections (in (Lang, 1990) the connections that share 
identical weight values are determined in advance by using prior knowledge about invari­
ances in the problem to be solved). A second approach to avoid overfitting in neural net­
works is to make use of regularization methods. Regularization adds an extra term to the 
training objective function that penalizes network complexity. The simplest regularization 
method is weight decay (Plaut, 1986) that assigns high penalties to large weights. A more 
complex regularization term is used in soft weight-sharing (Nowlan, 1992) by favoring 
neural network weights that fall into a finite set of small weight-clusters. The traditional 
neural weight sharing technique can be interpreted as a special case of soft weight-sharing 
regularization when the cluster variances tend towards zero. 

In continuous speech recognition the Hidden Markov Model (HMM) method is common. 
When using detailed context-dependent triphone HMMs, the number ofHMM-states and 
parameters to estimate in the state-dependent probability density functions (pdfs) is in­
creasingly large and overfitting becomes a serious problem. The most common approach 

,to balance the complexity of triphone HMM systems against the training data set is to re­
duce the number of parameters by tying, i.e. parameter sharing (Young, 1992). A popular 
sharing method is state-tying with selecting the HMM-states to be tied in advance, either 
by data-driven state-clustering based on a pdf-dependent distance metric (Young, 1993), 
or by constructing binary decision trees that incorporate higher phonetic knowledge (Bahl, 
1991). In these methods, the number of state-clusters and the decision tree sizes, respec­
tively, must be chosen adequately to match the training data size. However, a possible 
drawback of both methods is that two different states may be selected to be tied (and their 
pdfs are forced to be identical) although there is enough training data to estimate the differ­
ent pdfs of both states sufficiently well. In the following, a method to reduce the complexity 
of general HMM systems based on a regularization term is presented. Due to its close rela­
tionship to the soft weight-sharing method for neural networks this novel approach can be 
interpreted as soft state-tying. 

2 Maximum likelihood training in HMM systems 

Traditionally, the method most commonly used to determine the set of adjustable param­
eters 8 in a HMM system is maximum likelihood (ML) estimation via the expectation 
maximization (EM) algorithm. If the training observation vector sequence is denoted as 
X = (x(l), ... ,x(T)) and the corresponding HMM is denoted as W the ML estimator is 
given by: 

{)ML = argmax {logpe(XIW)} 
() 

(1) 

In the following, the total number of different HMM states is given by K. The emission pdf 
,of the k-th state is denoted as bk (x); for continuous HMMs bk (x) is a mixture of Gaussian 
pdfs most commonly; in the case of discrete HMMs the observation vector x is mapped by 
a vector quantizer (VQ) on the discrete VQ-Iabel m(x) and the emission pdfis replaced by 
the discrete output probability bk (m). By the forward-backward algorithm the probabilistic 
state counts rdt) can be determined for each training observation and the log-likelihood 
over the training data can be decomposed into the auxiliary function Q (8) optimized in 
the EM steps (state transition probabilities are neglected here): 

T K 

Q(8) = L L rk(t) ·logbk(x(t)) (2) 
t=l k=l 

Sometimes, the observation vector x is split up into several independent streams. If the total 
number of streams is given by Z, the features in the z-th stream comprise the subvector x(z) 

and in the case of application ofa VQ the corresponding VQ label is denoted as m(z) (x(z»). 
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The observation subvectors in different streams are assumed to be statistically independent 
thus the states' pdfs can be written as: 

Z 

bk(x) = II b~z)(x(z») (3) 
z=l 

3 A complexity measure for HMM systems 

When using regularization methods to train the HMM system, the traditional objective 
training function Q(0) is augmented by a complexity penalization term 0 and the new 
optimization problem becomes: 

(reg = argmax {Q(0) + v· 0(0)} 
(} 

(4) 

Here, the regulizer term 0 should be small if the HMM system has high complexity and 
parameter overfitting becomes a problem; 0 should be large if the HMM-states' pdfs are 
shaped smoothly and system generalization works well. The constant v 2: 0 is a control 
parameter that adjusts the tradeoff between the pure ML solution and the smoothness of 
penalization. In Eqn. (4) the term Q (0) becomes larger the more data is used for training 
(which makes the ML estimation become more reliable) and the influence of the term v· 0 
gets less important, relatively. 

The basic idea when constructing an expression for the regulizer 0 that favors smooth 
HMM systems is, that in the case of simple and smooth systems the state-dependent emis­
sion pdfs bk (.) should fall into several groups of similar pdfs. This is in contrast to the 
traditional state-tying that forces identical pdfs in each group. In the following, these clus­
ters of similar emission pdfs are described by a probabilistic mixture model. Each pdf is 
assumed to be generated by a mixture of I different mixture components Pi (. ). In this case 
the probability (-density) of generating the emission pdf bk (.) is given by: 

I 

p(bkO) = L Ci . Pi(bk(·)) (5) 
i=l 

with the mixture weights Ci that are constrained to 0 ::::; Ci ::::; 1 and 1 = 2::=1 ci. The i-th 
mixture component Pi (.) is used to model the i-th cluster of HMM-emission pdfs. Each 
cluster is represented by a prototype pdf that is denoted as fJi (.) for the i-th cluster; the 
distance (using a suitable metric) between a HMM emission pdf bk 0 and the i-th prototype 
pdfis denoted as Di(bk (.)). If these distances are small for all HMM emission probabilities 
there are several small clusters of emission probabilities and the regulizer term 0 should be 
large. Now, it is assumed that the distances follow a negative exponential distribution (with 
a deviation parameter Ai), yielding an expression for the mixture components: 

p; (b.O) - (g A;,,) . exp ( - ~ A;" . D;" (bh)) ) (6) 

In Eqn. (6) the more general case of Z independent streams is given. Hence, the HMM 

emission pdfs and the cluster prototype pdfs are split up into Z different pdfs b~) (.) and 

fJ;Z) ( . ), respectively and the stream dependent distances D i,z and parameters Ai,z are used. 

Now, for the regulizer term 0 the log-likelihood of the mixture model in Eqn. (5) over all 
emission pdfs in the HMM system can be used: 

K 

0(0) = L logp(bk (·)) (7) 
k=l 
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4 Regularization example: discrete HMMs 

As an example for parameter estimation in the regularization framework, a discrete HMM 
system with different VQs for each of the Z streams is considered here: Each VQ subdi­
vides the feature space into J z different partitions (i.e. the z-th codebook size is J z) and 
the VQ-partition labels are denoted m)z) . If the observation subvector x (z) is in the j-th 

VQ-partition the VQ output is m(z) (x(z)) = m)Z). 

Since the discrete kind HMM output probabilities b~\m(z)) are used here, the regulizer's 

, prototypes are the discrete probabilities (3~z) (m (z) ). As a distance metric between the HMM 
emission probabilities and the prototype probabilities used in Eqn. (6) the asymmetric 
Kullback-Leibler divergence is applied: 

(8) 

4.1 Estimation of HMM parameters using regularization 

The parameter set e of the HMM system to be estimated mainly consists of the discrete 
HMM emission probabilities (transition probabilities are not subject of regularization here). 
To get an iterative parameter estimation in the EM style, Eqn. (4) must be maximized; e.g. 
by setting the derivative of Eqn. (4) with respect to the HMM -parameter b~) (m )z) ) to zero 

and application of Lagrange multipliers with regard to the constraint 1 = EJ~ 1 biz) (m ;z)) . 
This leads to a quite complex solution that can be only solved numerically. 

The optimization problem can be simplified if the mixture in Eqn. (5) is replaced by the 
maximum approximation; i.e. only the maximum component in the sum is considered. The 
corresponding index of the maximum component is denoted i * : 

(9) 

In this simplified case the HMM parameter estimation is given by: 

(10) 

This is a weighted sum of the well known ML solution and the regulizer's prototype proba­

bility (3i~ (.) that is selected by the maximum search in Eqn. (9). The larger the value ofthe 
constant II, the stronger is the force that pushes the estimate of the HMM emission probabil-
ity biz) (m ;z)) towards the prototype probability (3i~ (.). The situation when II tends towards 
infinity corresponds to the case of traditional state-tying, because all different states that 

fall into the same cluster i* make use of (3i~ (.) as emission probability in the z-th stream. 

4.2 Estimation of regulizer parameters 

The parameter set ~ of the regulizer consists of the mixture weights Ci, the deviation pa­

rameters Ai,z , and of the discrete prototype probabilities (3~z) (m ;z) ) in the case of regulizing 
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discrete HMMs. These parameters can be set in advance by making use of prior knowl­
edge; e.g. the prototype probabilities can be obtained from a simple HMM system that 
uses a small number of states. Alternatively, the regulizer's parameters can be estimated in 
a similar way as in (Nowlan, 1992) by maximizing Eqn. (7). Since there is no direct solu­
tion to this optimization problem, maximization must be performed in an EM-like iterative 
procedure that uses the HMM emission pdfs bk (.) as training data for the mixture model 
and by increasing the following auxiliary function in each step: 

K I 

R(~) = L L P(ilbk(·)) ·logp(i, bk(·)) 
k=1 i=1 

K I 

L L P(ilbk(·)) . log (Ci . Pi(bk(·))) 
k=1 i=1 

with the posterior probability used as weighting factor given by: 

P(ilbk(.)) = ICi . Pi(bk(')) 
2::1=1 Cl . Pl(bk(·)) 

(11) 

(12) 

Again, maximization of Eqn. (11) can be performed by setting the derivative of R(~) 
with respect to the regulizer's parameters to zero under consideration of the constraints 

1 = 2:::=1 ci and 1 = 2:::::1 f3~Z)(m~Z)) by application of Lagrange multipliers. For the es-
o timation of the regulizer parameters this yields: 

K 

Ci = ~ . L P(ilbk (-)) 

k=1 
(13) 

~. _ 2:::=1 P(ilbk(·)) 
~,z - 2:::=1 Di,z(b~) (.)) . P(ilbk(-)) 

(14) 

(
2:::=1 P(ilbk(')) 'IOgb~)(m)Z))) 

exp K. 

~(z)( (z)) _ 2::k=1 P(zlbk(')) 

i mj - ~ (2:::=1 P(llbk (.)) 'IOgb~)(m}Z))) 
~exp K 
1=1 2::k=1 P(llbk (·)) 

(15) 

The estimate Ci can be interpreted as the a:-erage probability that a HMM emission prob­
ability falls into the i-th mixture cluster; Ai,z is the inverse ofthe weighted average dis­

tance between the emission probabilities and the prototype probability f3;z) ( .). The estimate 

~;z)(m)zl) is the average probability over all emission probabilities for the VQ-label m~zl 
weighted in the log-domain. 

If the Euclidean distance between the discrete probabilities is used instead of Eqn. (8) to 
measure the differences between the HMM emission probabilities and the prototypes 

Jz 2 

Di 'Z (b~)(m(zl)) = L (f3jz\myl) - b~z)(m;Zl)) (16) 
j=1 

the estimate of the prototype probabilities is given by the average of the HMM probabilities 
weighted in the original space: 

(17) 
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5 Experimental results 

To investigate the performance of the regularization methods described above a HMM 
speech recognition system for the speaker-independent resource management (RM) con­
tinuous speech task is built up. For training 3990 sentences from 109 different speakers are 
used. Recognition results are given as word error rates averaged over the official DARPA 
RM test sets feb'89, oct'89, feb'91 and sep'92, consisting of 1200 sentences from 40 differ­
ent speakers, totally. Recognition is done via a beam search guided Viterbi decoder using 
the DARPA RM word pair grammar (perplexity: 60). 

'As acoustic features every 10 ms 12 MFCC coefficients and the relative signal power are 
extracted from the speech signal along with the dynamic ~- and ~~-features, comprising 
39 features per frame. The HMM system makes use of standard 3-state discrete proba­
bility phonetic models. Four different neural networks, trained by the MMI method, that 
is described in in (Rigoll, 1997) and extended in (Neukirchen, 1998), are used as VQ to 
quantize the features into Z = 4 different streams of discrete labels. The codebook size in 
each stream is set to 200. 

A simple system with models for 47 monophones and for the most prominent 33 function 
words (totally 394 states) yields a word error rate of 8.6%. A system that makes use of 
the more detailed (but untied) word internal triphone models (totally 6921 states) yields 
12.2% word error. Hence HMM overfitting because of insufficient training data is a severe 
problem in this case. Traditional methods to overcome the effects of overfitting like inter­
polating between triphones and monophones (Bahl, 1983), data driven state-clustering and 
decision tree clustering yield error rates of 6.5%, 8.3% and 6.4%, respectively. It must be 
noted that in contrast to the usual training procedure in (Rigoll, 1996) no further smoothing 
methods are applied to the HMM emission probabilities here. 

In a first series of experiments the untied triphone system is regulized by a quite simple 
mixture of I = 394 density components, i.e. the number of clusters in the penalty term is 
identical to the number of states in the monophone system. In this case the prototype prob­
abilities are initialized by the emission probabilities of the monophone system; the mixture 
weights and the deviation parameters in the regulizer are set to be uniform, initially. In 
order to test the inluence of the tradeoff parameter v it is set to 50, 10 and 2, respectively. 
The corresponding word error rates are 8.4%, 6.9% and 6.3%, respectively. In the case 
of large vs regularization degrades to a tying of trip hone states to monophone states and 

,the error rate tends towards the monophone system performance. For smaller vs there is a 
good tradeoff between data fitting and HMM smoothness yielding improved system perfor­
mance. The initial prototype probability settings provided by the monophone system do not 
seem to be changed much by regulizer parameter estimation, since the system performance 
only changes slightly when the regulizer's parameter reestimation is not incorporated. 

In preliminary experiments the regularization method is also used for speaker adaptation. 
A speaker-independent system trained on the Wall Street Journal (WSJ) database yields an 
error rate of32.4% on the Nov. 93 S33>0 test set with 10 different non-native speakers. The 
speaker-independent HMM emission probabilities are used to initialize the prototype prob­
abilities of the regulizer. Then, speaker-dependent systems are built up for each speaker 
using only 40 fast enrollment sentences for training along with regularization (v is set to 
10). Now, the error rate drops to 25.7% what is better than the speaker adaptation method 
described in (Rottland, 1998) that yields 27.3% by a linear feature space transformation. In 
combination both methods achieve 23.0% word error. 

6 Summary and Discussion 

A method to avoid parameter overfitting in HMM systems by application of a regulariza­
tion term that favor smooth and simple models has been presented here. The complexity 



Controlling the Complexity of HMM Systems by Regularization 743 

measure applied to the HMMs is based on a finite mixture of negative exponential distribu­
tions, that generates the state-dependent emission probabilities. This kind of regularization 
term can be interpreted as a soft state-tying, since it forces the HMM emission probabilities 
to form a finite set of clusters. The effect of regularization has been demonstrated on the 
RM task by improving overfitted trip hone models. On a WSJ non-native speaker adaption 
task with limited training data, regularization outperforms feature space transformations. 

Eqn. (4) may be also interpreted from a perspective of Bayesian inference: the term v . 
n plays the role of setting a prior distribution on the HMM parameters to be estimated. 
Hence, the use of a mixture model for n is equivalent to using a special kind of prior in the 
framework of MAP estimation for HMMs (Gauvain, 1994). 
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