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Abstract 

We seek the scene interpretation that best explains image data. 
For example, we may want to infer the projected velocities (scene) 
which best explain two consecutive image frames (image). From 
synthetic data , we model the relationship between image and scene 
patches , and between a scene patch and neighboring scene patches. 
Given' a new image, we propagate likelihoods in a Markov network 
(ignoring the effect of loops) to infer the underlying scene. This 
yields an efficient method to form low-level scene interpretations. 
We demonstrate the technique for motion analysis and estimating 
high resolution images from low-resolution ones. 

1 Introduction 

There has been recent interest in studying the statistical properties of the visual 
world. Olshausen and Field [23J and Bell and Sejnowski [2J have derived VI-like 
receptive fields from ensembles of images; Simon celli and Schwartz [30J account for 
contrast normalization effects by redundancy reduction. Li and Atick [1 J explain 
retinal color coding by information processing arguments. Various research groups 
have developed realistic texture synthesis methods by studying the response statis­
tics of VI-like multi-scale, oriented receptive fields [12 , 7, 33, 29J. These methods 
help us understand the early stages of image representation and processing in the 
brain. 

Unfortunately, they don 't address how a visual system might interpret images , i.e., 
estimate the underlying scene. In this work, we study the statistical properties of 
a labelled visual world , images together with scenes, in order to infer scenes from 
images. The image data might be single or multiple frames; the scene quantities 



776 W T. Freeman and E. C. Pasztor 

to be estimated could be projected object velocities, surface shapes, reflectance 
patterns, or colors . 

We ask: can a visual system correctly interpret a visual scene if it models (1) 
the probability that any local scene patch generated the local image, and (2) the 
probability that any local scene is the neighbor to any other? The first probabilities 
allow making scene estimates from local image data, and the second allow these 
local estimates to propagate. This leads to a Bayesian method for low level vision 
problems, constrained by Markov assumptions. We describe this method, and show 
it working for two low-level vision problems. 

2 Markov networks for scene estimation 

First, we synthetically generate images and their underlying scene representations, 
using computer graphics. The synthetic world should typify the visual world in 
which the algorithm will operate. 

For example, for the motion estimation problem of Sect . 3, our training images were 
irregularly shaped blobs, which could occlude each other, moving in randomized 
directions at speeds up to 2 pixels per frame . The contrast values of the blobs and 
the background were randomized. The image data were the concatenated image 
intensities from two successive frames of an image sequence. The scene data were 
the velocities of the visible objects at each pixel in the two frames. 

Second, we place the image and scene data in a Markov network [24]. We break 
the images and scenes into localized patches where image patches connect with un­
derlying scene patches; scene patches also connect with neighboring scene patches. 
The neighbor relationship can be with regard to position, scale, orientation, etc. 

For the motion problem, we represented both the images and the velocities in 4-
level Gaussian pyramids [6], to efficiently communicate across space. Each scene 
patch then additionally connects with the patches at neighboring resolution levels. 
Figure 2 shows the multiresolution representation (at one time frame) for images 
and scenes. 1 

Third, we propagate probabilities. Weiss showed the advantage of belief propagation 
over regularization methods for severall-d problems [31]; we apply related methods 
to our 2-d problems. Let the ith and jth image and scene patches be Yi and 
Xj, respectively. For the MAP estimate [3] of the scene data,2 we want to find 
argmaxxl ,X2 , ... ,XNP(Xl,X2,'" ,xNIYl,Y2, .. . ,YM), where Nand M are the number 
of scene and image patches. Because the joint probability is simpler to compute, 
we find, equivalently, argmaxx1,X2, ... ,XNP(Xl , X2,· . . , XN, Yl , Y2, · .. , YM) . 

The conditional independence assumptions of the Markov network let us factorize 
the desired joint probability into quantities involving only local measurements and 
calculations [24, 32]. Consider the two-patch system of Fig. 1. We can factorize 
P(Xl , X2,Yl,Y2) in three steps: (1) P(XI,X2 ,Yl,Y2) = P(X2 ,Yl,Y2Ixt}P(Xl) (by el­
ementary probability); (2) P(X2,Yl,Y2Ixl) = P(ydXl)P(X2 ,Y2Ixl) (by conditional 

ITo maintain the desired conditional independence relationships, we appended the im­
age data to the scenes. This provided the scene elements with image contrast information , 
which they would otherwise lack. 

2Related arguments follow for the MMSE or other estimators. 
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independence); (3) P(X2,Y2IxI) = P(x2Ixt}P(Y2Ix2) (by elementary probability 
and the Markov assumption). To estimate just Xl at node 1, the argmaxx2 becomes 
maxX 2 , and then slides over constants, giving terms involving only local computa­
tions at each node: 

argmaxX1 maxx2 P(xI, X2, YI, Y2) = argmaxx1 [P(XI )P(Yllxl)maxX2 [P(x2Ixt}P(Y2I x2)]]. 
(1) 

This factorization generalizes to any network structure without loops. We use a 
different factorization at each scene node: we turn the initial joint probability into 
a conditional by factoring out that node's prior, P(Xj) , then proceeding analogously 
to the example above. The resulting factorized computations give local propagation 
rules, similar to those of [24, 32] : Each node, j, receives a message from each 
neighbor, k , which is an accumulated likelihood function, Lkj = P(Yk ... Yzlxj), 
where Yk . .. Yz are all image nodes that lie at or beyond scene node k, relative to 
scene node j. At each iteration, more image nodes Y enter that likelihood function. 
After each iteration, the MAP estimate at node j is argmaxXj P(x j )P(Yj Ix j) Ilk L kj , 
where k runs over all scene node neighbors of node j . We calculate Lkj from: 

L kj = maxxkP(xklxj)P(Yklxk) II £lk, 
l#j 

(2) 

where Llk is Llk from the previous iteration. The initial £lk'S are 1. Using the 

Figure 1: Markov network nodes used in example. 

factorization rules described above, one can verify that the local computations will 
compute argmaxx1 ,X2 , . .. , XN P(XI' X2, ... ,xNIYI, Y2, ... ,YM), as desired. To learn the 
network parameters, we measure P(Xj), P(Yjlxj), and P(xklxj) , directly from the 
synthetic training data. 

If the network contains loops, the above factorization does not hold . Both learning 
and inference then require more computationally intensive methods [15]. Alterna­
tively, one can use multi-resolution quad-tree networks [20], for which the factor­
ization rules apply, to propagate information spatially. However , this gives results 
with artifacts along quad-tree boundaries , statistical boundaries in the model not 
present in the real problem. We found good results by including the loop-causing 
connections between adjacent nodes at the same tree level but applying the factor­
ized propagation rules, anyway. Others have obtained good results using the same 
approach for inference [8, 21, 32]; Weiss provides theoretical arguments why this 
works for certain cases [32]. 

3 Discrete Probability Representation (motion example) 

We applied the training method and propagation rules to motion estimation, using 
a vector code representation [11] for both images and scenes. We wrote a tree­
structured vector quantizer, to code 4 by 4 pixel by 2 frame blocks of image data 
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for each pyramid level into one of 300 codes for each level. We also coded scene 
patches into one of 300 codes. 

During training, we presented approximately 200,000 examples of irregularly shaped 
moving blobs, some overlapping, of a contrast with the background randomized 
to one of 4 values. Using co-occurance histograms, we measured the statistical 
relationships that embody our algorithm: P(x) , P(ylx), and P(xnlx), for scene Xn 
neighboring scene x. 

Figure 2 shows an input test image, (a) before and (b) after vector quantization. The 
true underlying scene, the desired output, is shown (c) before and (d) after vector 
quantization. Figure 3 shows six iterations of the algorithm (Eq. 2) as it converges 
to a good estimate for the underlying scene velocities. The local probabilities we 
learned (P(x), P(ylx), and P(xnlx)) lead to figure/ground segmentation, aperture 
problem constraint propagation, and filling-in (see caption). 

Figure 2: (a) First of two frames of image data (in gaussian pyramid), and (b) 
vector quantized. (c) The optical flow scene information , and (d) vector quantized. 
Large arrow added to show small vectors ' orientation. 

4 Density Representation (super-resolution example) 

For super-resolution, the input "image" is the high-frequency components (sharpest 
details) of a sub-sampled image. The "scene" to be estimated is the high-frequency 
components of the full-resolution image, Fig. 4. 

We improved our method for this second problem. A faithful image representation 
requires so many vector codes that it becomes infeasible to measure the prior and 
co-occurance statistics (note unfaithful fit of Fig. 2) . On the other hand, a discrete 
representation allows fast propagation. We developed a hybrid method that allows 
both good fitting and fast propagation. 

We describe the image and scene patches as vectors in a continuous space, and 
first modelled the probability densities, P(x) , P(y, x), and P(xn, x), as gaussian 
mixtures [4] . (We reduced the dimensionality some by principal components analysis 
[4]). We then evaluated the prior and conditional distributions of Eq. 2 only at a 
discrete set of scene values, different for each node. (This sample-based approach 
relates to [14, 7]). The scenes were a sampling of those scenes which render to the 
image at that node. This focusses the computation to the locally feasible scene 
interpretations. P(xkIXj) in Eq. 2 becomes the ratios of the gaussian mixtures 
P(Xk ,Xj) and P(Xj), evaluated at the scene samples at nodes k and j, respectively. 
P(Yklxk) is P(Yk ,Xk)/P(Xk) evaluated at the scene samples of node k. 

To select the scene samples, we could condition the mixture P(y , x) on the Y ob­
served at each node, and sample x's from the resulting mixture of gaussians . We 
obtained somewhat better results by using the scenes from the training set whose 
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Figure 3: The most probable scene code for Fig. 2b at first 6 iterations of Bayesian 
belief propagation. (a) Note initial motion estimates occur only at edges. Due to 
the "aperture problem", initial estimates do not agree. (b) Filling-in of motion 
estimate occurs. Cues for figure/ground determination may include edge curvature, 
and information from lower resolution levels. Both are included implicitly in the 
learned probabilities. (c) Figure/ground still undetermined in this region of low 
edge curvature. (d) Velocities have filled-in, but do not yet all agree. (e) Velocities 
have filled-in , and agree with each other and with the correct velocity direction, 
shown in Fig. 2. 
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images most closely matched the image observed at that node (thus avoiding one 
gaussian mixture modeling step). 

Using 40 scene samples per node, setting up the P(xklxj) matrix for each link took 
several minutes for 96x96 pixel images. The scene (high resolution) patch size was 
3x3; the image (low resolution) patch size was 7x7. We didn't feel long-range scene 
propagation was critical here, so we used a flat, not a pyramid, node structure. 
Once the matrices were computed, the iterations of Eq. 2 were completed within 
seconds. 

Figure 4 shows the results. The training images were random' shaded and painted 
blobs such as the test image shown. After 5 iterations, the synthesized maximum 
likelihood estimate of the high resolution image is visually close to the actual high 
frequency image (top row). (Including P(x) gave too flat results, we suspect due 
to errors modeling that highly peaked distribution). The dominant structures are 
all in approximately the correct position. This may enable high quality zooming of 
low-resolution images, attempted with limited success by others [28, 25]. 

5 Discussion 

In related applications of Markov random fields to vision, researchers typically use 
relatively simple, heuristically derived expressions (rather than learned) for the like­
lihood function P(ylx) or for the spatial relationships in the prior term on scenes 
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Figure 4: Superresolution example. Top row: Input and desired output (contrast 
normalized, only those orientations around vertical). Bottom row: algorithm out­
put and comparison of image with and without estimated high vertical frequencies . 

[10, 26, 9, 17, 5, 20, 19, 27]. Some researchers have applied related learning ap­
proaches to low-level vision problems, but restricted themselves to linear models 
[18, 13]. For other learning or constraint propagation approaches in motion analy­
sis, see [20, 22, 16]. 

In summary, we have developed a principled and practical learning based method 
for low-level vision problems. Markov assumptions lead to factorizing the posterior 
probability. The parameters of our Markov random field are probabilities specified 
by the training data. For our two examples (programmed in C and Matlab, respec­
tively), the training can take several hours but the running takes only several min­
utes. Scene estimation by Markov networks may be useful for other low-level vision 
problems, such as extracting intrinsic images from line drawings or photographs. 
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