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Abstract 

Semiparametric models are useful tools in the case where domain 
knowledge exists about the function to be estimated or emphasis is 
put onto understandability of the model. We extend two learning 
algorithms - Support Vector machines and Linear Programming 
machines to this case and give experimental results for SV ma­
chines. 

1 Introduction 

One of the strengths of Support Vector (SV) machines is that they are nonparamet­
ric techniques, where one does not have to e.g. specify the number of basis functions 
beforehand. In fact, for many of the kernels used (not the polynomial kernels) like 
Gaussian rbf- kernels it can be shown [6] that SV machines are universal approxi­
mators. 

While this is advantageous in general, parametric models are useful techniques in 
their own right. Especially if one happens to have additional knowledge about the 
problem, it would be unwise not to take advantage of it. For instance it might be 
the case that the major properties of the data are described by a combination of a 
small set of linear independent basis functions {¢Jt (.), ... , ¢n (.)}. Or one may want 
to correct the data for some (e.g. linear) trends. Secondly it also may be the case 
that the user wants to have an understandable model, without sacrificing accuracy. 
For instance many people in life sciences tend to have a preference for linear models. 
This may be some motivation to construct semiparametric models, which are both 
easy to understand (for the parametric part) and perform well (often due to the 
nonparametric term). For more advocacy on semiparametric models see [1]. 

A common approach is to fit the data with the parametric model and train the non­
parametric add-on on the errors of the parametric part, Le. fit the nonparametric 
part to the errors. We show in Sec. 4 that this is useful only in a very restricted 
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situation. In general it is impossible to find the best model amongst a given class 
for different cost functions by doing so. The better way is to solve a convex op­
timization problem like in standard SV machines, however with a different set of 
admissible functions 

n 

f(x) = (w,1jJ(x)) + 2:f3irPi(X). (1) 
i=l 

Note that this is not so much different from the classical SV [10J setting where one 
uses functions of the type 

f(x) = (w, 1jJ(x)) + b. (2) 

2 Semiparametric Support Vector Machines 

Let us now treat this setting more formally. For the sake of simplicity in the 
exposition we will restrict ourselves to the case of SV regression and only deal with 
the c- insensitive loss function 1~lc = max{O, I~I - c}. Extensions of this setting are 
straightforward and follow the lines of [7J. 

Given a training set of size f, X := {(Xl, yd , ., . ,(xe, ye)} one tries to find a function 
f that minimizes the functional of the expected risk l 

R[JJ = J c(f(x) - y)p(x, y)dxdy. (3) 

Here c(~) denotes a cost function, i.e. how much deviations between prediction 
and actual training data should be penalized. Unless stated otherwise we will use 
c(~) = 1~lc . 

As we do not know p(x, y) we can only compute the empirical risk Remp[JJ (i.e. the 
training error). Yet, minimizing the latter is not a good idea if the model class is 
sufficiently rich and will lead to overfitting. Hence one adds a regularization term 
T [JJ and minimzes the regularized risk functional 

e 
Rreg[J] = 2: C(f(Xi) - Yi) + AT[J] with A > O. (4) 

i=l 

The standard choice in SV regression is to set T[J] = ~llwI12. 

This is the point of departure from the standard SV approach. While in the latter 
f is described by (2), we will expand f in terms of (1). Effectively this means that 
there exist functions rPl (.), . .. , rPn (.) whose contribution is not regularized at all. 
If n is sufficiently smaller than f this need not be a major concern, as the VC­
dimension of this additional class of linear models is n, hence the overall capacity 
control will still work, provided the nonparametric part is restricted sufficiently. 
Figure 1 explains the effect of choosing a different structure in detail. 

Solving the optimization equations for this particular choice of a regularization 
term, with expansion (1), the c- insensitive loss function and introducing kernels 

1 More general definitions, mainly in terms of the cost function , do exist but for the 
sake of clarity in the exposition we ignored these cases. See [10] or [7] for further details 
on alternative definitions of risk functionals . 
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Figure 1: Two different nested subsets (solid and dotted lines) of hypotheses and the 
optimal model (+) in the realizable case. Observe that the optimal model is already 
contained in much a smaller (in this diagram size corresponds to the capacity of 
a subset) subset of the structure with solid lines than in the structure denoted by 
the dotted lines. Hence prior knowledge in choosing the structure can have a large 
effect on generalization bounds and performance. 

following [2J we arrive at the following primal optimization problem: 

l 
minimize %llwl12 + L ~i +~; 

subject to 

i=l 

n 
(W,1jJ(Xi)) + L (3j¢j(Xi) - Yi < to + ~i 

j=l 
n 

Yi - (w, 1jJ(xd) - L (3j¢j (Xi) < to + ~i 
j=l 

> 0 

(5) 

Here k(x, x') has been written as (1jJ(x) , 1jJ(x' )). Solving (5) for its Wolfe dual yields 

maXImIze 

subject to 

{ 

-~ i,El (ai - ai)(aj - aj)k(xi,Xj) 

( ( 

-E L (ai + an + L Yi (ai - an 
i=l i=l 

{ 
( 

L(ai - an¢j(Xi) 
i=l 
Lti,ai 

o for all 1 ~ j ~ n 

E [0,1/ >.J 

(6) 

Note the similarity to the standard SV regression model. The objective function 
and the box constraints on the Lagrange multipliers ai, a; remain unchanged. The 
only modification comes from the additional unregularized basis functions. Whereas 
in the standard SV case we only had a single (constant) function b· 1 we now have 
an expansion in the basis (3i ¢i ( .). This gives rise to n constraints instead of one. 
Finally f can be found as 

l n l 

f(x) = L(ai - a;)k(xi' x) + L (3i¢i(X) since w = L(ai - ai)1jJ(xi). (7) 
i=l i=l i=l 

The only difficulty remaining is how to determine (3i. This can be done by exploiting 
the Karush- Kuhn- Tucker optimality conditions, or much more easily, by using an 
interior point optimization code [9J. In the latter case the variables (3i can be 
obtained as the dual variables of the dual (dual dual = primal) optimization problem 
(6) as a by product of the optimization process. This is also how these variables 
have been obtained in the experiments in the current paper. 
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3 Semiparametric Linear Programming Machines 

Equation (4) gives rise to the question whether not completely different choices of 
regularization functionals would also lead to good algorithms. Again we will allow 
functions as described in (7). Possible choices are 

T[J] = ~//wI12 + t /~i/ (8) 

or 

or 

i=l 
t 

T[f] = L lai - a:/ 
i=l 

tIn 
T[f] = L lai - a:1 +"2 L ~dJjMij 

i=l i ,j=l 

(9) 

(10) 

for some positive semidefinite matrix M. This is a simple extension of existing 
methods like Basis Pursuit [3] or Linear Programming Machines for classification 
(see e.g. [4]). The basic idea in all these approaches is to have two different sets 
of basis functions that are regularized differently, or where a subset may not be 
regularized at all. This is an efficient way of encoding prior knowledge or the 
preference of the user as the emphasis obviously will be put mainly on the functions 
with little or no regularization at all. Eq. (8) is essentially the SV estimation model 
where an additional linear regularization term has been added for the parametric 
part. In this case the constraints of the optimization problem (6) change into 

t 
-1 < E(ai-ai)¢j(xd < 1 forall1:::;j:::;n 

i=l (11) 
ai,ar E [O,l/A] 

It makes little sense (from a technical viewpoint) to compute Wolfe's dual objective 
function in (10) as the problem does not get significantly easier by doing so. The 
best approach is to solve the corresponding optimization problem directly by some 
linear or quadratic programming code, e.g. [9]. Finally (10) can be reduced to the 
case of (8) by renaming variables accordingly and a proper choice of M. 

4 Why Backfitting is not sufficient 

One might think that the approach presented above is quite unnecessary and overly 
complicated for semi parametric modelling. In fact, one could try to fit the data to 
the parametric model first, and then fit the nonparametric part to the residuals. 
In most cases, however, this does not lead to finding the minimum of (4). We will 
show this at a simple example. 

Take a SV machine with linear kernel (i.e. k(x, x') = (x, x')) in one dimension and 
a constant term as parametric part (i.e. f(x) = wx + $). This is one of the simplest 
semiparametric SV machines possible. Now suppose the data was generated by 

Yi = Xi where Xi 2: 1 (12) 

without noise. Clearly then also Yi 2: 1 for all i. By construction the best overall fit 
of the pair (~, w) will be arbitrarily close to (0,1) if the regularization parameter A 
is chosen sufficiently small. 

For backfitting one first carries out the parametric fit to find a constant ~ minimizing 
the term E;=l C(Yi - $). Depending on the chosen cost function c(·), ~ will be the 
mean (L2-error), the median (L1-error), etc., of the set {Yl, ... , Yt}· As all Yi 2: 1 
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Figure 2: Left: Basis functions used in the toy example. Note the different length 
scales of sin x and sinc 27rx. For convenience the functions were shifted by an offset 
of 2 and 4 respectively. Right: Training data denoted by '+', nonparametric (dash­
dotted line), semiparametric (solid line), and parametric regression (dots). The 
regularization constant was set to A = 2. Observe that the semiparametric model 
picks up the characteristic wiggles of the original function. 

also {3 ~ 1 which is surely not the optimal solution of the overall problem as there 
(3 would be close to a as seen above. Hence not even in the simplest of all settings 
backfitting minimizes the regularized risk functional, thus one cannot expect the 
latter to happen in the more complex case either. There exists only one case in 
which backfitting would suffice, namely if the function spaces spanned by the kernel 
expansion {k(Xi")} and {4>i(')} were orthogonal. Consequently in general one has 
to jointly solve for both the parametric and the semiparametric part. 

5 Experiments 

The main goal of the experiments shown is a proof of concept and to display the 
properties of the new algorithm. We study a modification of the Mexican hat 
function, namely 

f(x) = sinx + sinc(27r{x - 5)). (13) 

Data is generated by an additive noise process, i.e. Yi = f(xd + ~i' where ~i is 
additive noise. For the experiments we choose Gaussian rbf-kernels with width 
u = 1/4, normalized to maximum output 1. The noise is uniform with 0.2 standard 
deviation, the E:-insensitive cost function I . Ie with E = 0.05. Unless stated other­
wise averaging is done over 100 datasets with 50 samples each. The Xi are drawn 
uniformly from the interval [0,10]. L1 and L2 errors are computed on the interval 
[0, 10] with uniform measure. Figure 2 shows the function and typical predictions in 
the nonparametric, semiparametric, and parametric setting. One can observe that 
the semiparametric model including sin x, cos x and the constant function as basis 
functions generalizes better than the standard SV machine. Fig. 3 shows that the 
generalization performance is better in the semiparametric case. The length of the 
weight vector of the kernel expansion IIwll is displayed in Fig. 4. It is smaller in the 
semiparametric case for practical values of the regularization strength. To make a 
more realistic comparison, model selection (how to determine 1/ A) was carried out 
by la-fold cross validation for both algorithms independently for all 100 datasets. 
Table 1 shows generalization performance for both a nonparametric model, a cor­
rectly chosen and an incorrectly chosen semiparametric model. The experiments 
indicate that cases in which prior knowledge exists on the type of functions to be 
used will benefit from semiparametric modelling. Future experiments will show how 
much can be gained in real world examples. 
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Figure 3: L1 error (left) and L2 error (right) of the nonparametric / semiparametric 
regression computed on the interval [0,10] vs. the regularization strength 1/),. The 
dotted lines (although hardly visible) denote the variance of the estimate. Note 
that in both error measures the semiparametric model consistently outperforms the 
nonparametric one. 
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Figure 4: Length of the weight vector w in fea­
ture space CEi,j(ai - ai)(aj - aj)k(xi,Xj))1/2 
vs. regularization strength. Note that Ilwl!' con­
trolling the capacity of that part of the function, 
belonging to the kernel expansion, is smaller (for 
practical choices of the regularization term) in 
the semiparametric than in the nonparametric 
model. If this difference is sufficiently large the 
overall capacity of the resulting model is smaller 
in the semiparametric approach. As before dot­
ted lines indicates the variance. 
Figure 5: Estimate of the parameters for 
sin x (top picture) and cos x (bottom picture) 
in the semiparametric model vs. regularization 
strength 1/),. The dotted lines above and below 
show the variation of the estimate given by its 
variance. Training set size was f. = 50. Note the 
small variation of the estimate. Also note that 
even in the parametric case 1/), ~ 0 neither the 
coefficient for sin x converges to 1, nor does the 
corresponding term for cos x converge to O. This 
is due to the additional frequency contributions 
of sinc 27rx. 

I 
Semi par am. I Semiparam. I 
sin x, cos x, 1 sin 2x, cos 2x, 1 

L1 error I 0.1263 ± 0.0064 (12) I 0.0887 ± 0.0018 (82) I 0.1267 ± 0.0064 (6) I 
L2 error I 0.1760 ± 0.0097 112)1 0.1197 ± 0.0046 (82) I 0.1864 ± 0.0124 (6) I 

Table 1: Ll and L2 error for model selection by 10-fold crossvalidation. The correct 
semiparametric model (sin x, cos x, 1) outperforms the nonparametric model by at 
least 30%, and has significantly smaller variance. The wrongly chosen nonparamet­
ric model (sin 2x, cos 2x, 1), on the other hand, gives performance comparable to the 
non parametric one, in fact, no significant performance degradation was noticeable. 
The number in parentheses denotes the number of trials in which the corresponding 
model was the best among the three models. 



Semiparametric Support Vector and Linear Programming Machines 591 

6 Discussion and Outlook 

Similar models have been proposed and explored in the context of smoothing splines. 
In fact, expansion (7) is a direct result of the representer theorem, however only in 
the case of regularization in feature space (aka Reproducing Kernel Hilbert Space, 
RKHS). One can show [5] that the expansion (7) is optimal in the space spanned 
by the RKHS and the additional set of basis functions. 

Moreover the semi parametric setting arises naturally in the context of conditionally 
positive definite kernels of order m (see [8]). There, in order to use a set of kernels 
which do not satisfy Mercer's condition, one has to exclude polynomials up to order 
m - 1. Hence, to with that one has to add polynomials back in 'manually' and our 
approach presents a way of doing that. 

Another application of semiparametric models besides the conventional approach 
of treating the nonparametric part as nuisance parameters [1] is the domain of 
hypothesis testing, e.g. to test whether a parametric model fits the data sufficiently 
well. This can be achieved in the framework of structural risk minimization [10] -
given the different models (nonparametric vs. semiparametric vs. parametric) one 
can evaluate the bounds on the expected risk and then choose the model with the 
lowest error bound. Future work will tackle the problem of computing good error 
bounds of compound hypothesis classes. Moreover it should be easily possible to 
apply the methods proposed in this paper to Gaussian processes. 
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