
Regularizing AdaBoost 

Gunnar Riitsch, Takashi Onoda; Klaus R. M iiller 
GMD FIRST, Rudower Chaussee 5, 12489 Berlin, Germany 

{raetsch, onoda, klaus }@first.gmd.de 

Abstract 

Boosting methods maximize a hard classification margin and are 
known as powerful techniques that do not exhibit overfitting for low 
noise cases. Also for noisy data boosting will try to enforce a hard 
margin and thereby give too much weight to outliers, which then 
leads to the dilemma of non-smooth fits and overfitting. Therefore 
we propose three algorithms to allow for soft margin classification 
by introducing regularization with slack variables into the boosting 
concept: (1) AdaBoostreg and regularized versions of (2) linear 
and (3) quadratic programming AdaBoost. Experiments show the 
usefulness of the proposed algorithms in comparison to another soft 
margin classifier: the support vector machine. 

1 Introd uction 

Boosting and other ensemble methods have been used with success in several ap­
plications, e.g. OCR [13, 8]. For low noise cases several lines of explanation have 
been proposed as candidates for explaining the well functioning of boosting meth­
ods. (a) Breiman proposed that during boosting also a "bagging effect" takes place 
[3] which reduces the variance and effectively limits the capacity of the system and 
(b) Freund et al. [12] show that boosting classifies with large margins, since the 
error function of boosting can be written as a function of the margin and every 
boosting step tries to minimize this function by maximizing the margin [9, 11]. 
Recently, studies with noisy patterns have shown that boosting does indeed overfit 
on noisy data, this holds for boosted decision trees [10], RBF nets [11] and also 
other kinds of classifiers (e.g. [7]). So it is clearly a myth that boosting methods 
will not overfit. The fact that boosting is trying to maximize the margin, is exactly 
also the argument that can be used to understand why boosting must necessarily 
overfit for noisy patterns or overlapping distributions and we give asymptotic argu­
ments for this statement in section 3. Because the hard margin (smallest margin in 
the trainings set) plays a central role in causing overfitting, we propose to relax the 
hard margin classification and allow for misclassifications by using the soft margin 
classifier concept that has been applied to support vector machines successfully [5]. 

·permanent address: Communication & Information Research Lab. CRIEPI, 2-11-1 
Iwado kita, Komae-shi, Tokyo 201-8511, Japan. 



Regularizing AdaBoost 565 

Our view is that the margin concept is central for the understanding of both sup­
port vector machines and boosting methods. So far it is not clear what the optimal 
margin distribution should be that a learner has to achieve for optimal classification 
in the noisy case. For data without noise a hard margin might be the best choice. 
However, for noisy data there is always the trade-off in believing in the data or 
mistrusting it, as the very data point could be an outlier. In general (e.g. neural 
network) learning strategies this leads to the introduction of regularization which 
reflects the prior that we have about a problem. We will also introduce a regu­
larization strategy (analogous to weight decay) into boosting. This strategy uses 
slack variables to achieve a soft margin (section 4). Numerical experiments show 
the validity of our regularization approach in section 5 and finally a brief conclusion 
is given. 

2 AdaBoost Algorithm 

Let {ht(x) : t = 1, ... ,T} be an ensemble of T hypotheses defined on input vector 
x and e = [Cl ... CT] their weights satisfying Ct > 0 and lei = 2:t Ct = 1. In the 
binary classification case, the output is one of two class labels, i.e. ht (x) = ±1. 
The ensemble generates the label which is the weighted majority of the votes: 
sgn (2:t Ctht(x)). In order to train this ensemble of T hypotheses {ht(x)} and 
e, several algorithms have been proposed: bagging, where the weighting is simply 
Ct = l/T [2] and AdaBoost/ Arcing, where the weighting scheme is more compli­
cated [12]. In the following we give a brief description of AdaBoost/ Arcing. We use 
a special form of Arcing, which is equivalent to AdaBoost [4]. In the binary classi­
fication case we define the margin for an input-output pair Zi = (Xi, Yi), i = 1, ... ,1 
by 

T 

mg(zi' e) = Yi L Ctht(Xi), (1) 
t=l 

which is between -1 and 1, if lei = 1. The correct class is predicted, if the margin 
at Z is positive. When the positivity of the margin value increases, the decision 
correctness becomes larger. AdaBoost maximizes the margin by (asymptotically) 
minimizing a function of the margin mg(zi' e) [9, 11] 

g(b) = t, exp { -1~lmg(Zi' C)}, (2) 

where b = [b l ... bTl and Ibl = 2:t bt (starting from b = 0). Note that bt is the 
unnormalized weighting of the hypothesis ht, whereas e is simply a normalized 
version of b, i.e. e = b/lbl. In order to find the hypothesis ht the learning examples 
Zi are weighted in each iteration t with Wt(Zi). Using a bootstrap on this weighted 
sample we train ht ; alternatively a weighted error function can be used (e.g. weighted 
MSE). The weights Wt(Zi) are computed according tol 

() exp{-lbt-llmg(zi,et-l)/2} 
Wt Zi = I 

2:j=l exp {-Ibt-dmg(zj, et-d/2} 
(3) 

and the training error tOt of ht is computed as tOt = 2:~=1 Wt(zi)I(Yi t ht(Xi)), where 
I(true) = 1 and I(false) = O. For each given hypothesis ht we have to find a weight 
bt , such that g(b) is minimized. One can optimize this parameter by a line search 

1 This direct way for computing the weights is equivalent to the update rule of AdaBoost. 



566 G. RaIsch. T. Onoda and K.-R. Maller 

or directly by analytic minimization [4], which gives bt = 10g(1 - €t} - log ft. 
Interestingly, we can write 

() 8g(ht-d/8mg(zi, h t- 1 } 
Wt Zi = I ' 2:j=l 8g(ht-d/8mg(zj, ht-d 

(4) 

as a gradient of g(ht - 1 ) with respect to the margins. The weighted minimization 
with Wt(Zi) will give a hypothesis ht which is an approximation to the best possible 
hypothesis h; that would be obtained by minimizing 9 directly. Note that, the 
weighted minimization (bootstrap, weighted LS) will not necessarily give hi, even 
if €t is minimized [11]. AdaBoost is therefore an approximate gradient descent 
method which minimizes 9 asymptotically. 

3 Hard margins 

A decrease of g(c, Ihl) := g(h) is predominantly achieved by improvements of the 
margin mg(zi' c). IT the margin mg(zi, c) is negative, then the error g(c, Ihl) takes 
clearly a big value, which is additionally amplified by Ihl. So, AdaBoost tries to 
decrease the negative margin efficiently to improve the error g(c, Ihl). 
Now, let us consider the asymptotic case, where the number of iterations and 
therefore also Ihl take large values [9]. In this case, when the values of all 
mg(zi,c),i = 1,···,l, are almost the same but have small differences , these differ­
ences are amplified strongly in g(c, Ihl). Obviously the function g(c, Ihl) is asymp­
totically very sensitive to small differences between margins. Therefore , the margins 
mg(zi' c) of the training patterns from the margin area (boundary area between 
classes) should asymptotically converge to the same value. From Eq. (3), when 
Ihl takes a very big value, AdaBoost learning becomes a "hard competition" case: 
only the pattern with smallest margin will get high weights, the other patterns are 
effectively neglected in the learning process. In order to confirm that the above 
reasoning is correct, Fig. 1 shows margin distributions after 104 AdaBoost itera­
tions for a toy example [9] at different noise levels generated by uniform distribution 
U(0.0,u 2 ) (left). From this figure, it becomes apparent that the margin distribution 
asymptotically makes a step at a fixed size of the margin for training patterns which 
are in the margin area. In previous studies [9, 11] we observed that those patterns 
exhibit a large overlap to support vectors in support vector machines. The numeri­
cal results support our theoretical asymptotic analysis. The property of AdaBoost 
to produce a big margin area (no pattern in the area, i.e. a hard margin), will not 
always lead to the best generalization ability (d. [5, 11]). This is especially true, 

0 
09 

0.8 
I 

, 
0 

1'. 

0 
·00 0 '" 

0 

F: " 0.22 

I 

0.215 

.~ 0.5 , , 
~ o. , 0.21 

, , 
~ 0.3 

0.205 
0.2 

0.1 0.2 

0 
0 0.2 0 .' 0.6 0.8 0.1'15 

stability 10' 10' 10' 10' 10' 1.5 2.5 

Figure 1: Margin distributions for AdaBoost (left) for different noise levels (a 2 = 
O%(dotted), 9%(dashed), 16%(solid» with fixed number of RBF-centers for the base hy­
pothesis and typical overfitting behaviour in the generalization error as a function of the 
number of iterations (middle) and a typical decision line (right) generated by AdaBoost 
using RBF networks in the case with noise (here: 30 centers and a 2 = 16%; smoothed) 



Regularizing AdaBoost 567 

if the training patterns have classification or input noise. In our experiments with 
noisy data, we often observed that AdaBoost made overfitting (for a high number 
of boosting iterations). Fig. 1 (middle) shows a typical overfitting behaviour in the 
generalization error for AdaBoost: after only 80 boosting iterations the best gen­
eralization performance is already achieved. Quinlan [10] and Grove et al. [7] also 
observed overfitting and that the generalization performance of AdaBoost is often 
worse than that of the single classifier, if the data has classification noise . 
The first reason for overfitting is the increasing value of Ibl: noisy patterns (e.g. bad 
labelled) can asymptotically have an "unlimited" influence to the decision line lead­
ing to overfitting (cf. Eq. (3)). Another reason is the classification with a hard 
margin, which also means that all training patterns will asymptotically be correctly 
classified (without any capacity limitation!). In the presence of noise this will cer­
tainly be not the right concept, because the best decision line (e.g. Bayes) usually 
will not give a training error of zero. So, the achievement of large hard margins for 
noisy data will produce hypotheses which are too complex for the problem. 

4 How to get Soft Margins 

Changing AdaBoost's error function In order to avoid overfitting, we in­
troduce slack variables, which are similar to those of the support vector algorithm 
[5, 14], into AdaBoost. 
We know that all training patterns will get non-negative stabilities after many itera­
tions(see Fig. 1(left)), i.e. mg(zi, c) 2: p for all i = 1, ... , I, where p is the minimum 
margin of the patterns. Due to this fact, AdaBoost often produces high weights for 
the difficult training patterns by enforcing a non-negative margin p 2: 0 (for every 
pattern including outliers) and this property will eventually lead to overfitting, as 
observed in Fig. 1. Therefore, we introduce some variables ~i - the slack variables -
and get 

mg(zi, c) 2: p - C~L ~f > O. (5) 
In these inequalities, ~! are positive and if a training pattern has high weights in 
the previous iterations, the ~! should be increasing. In this way, for example, we do 
not force outliers to be classified according to their possibly wrong labels, but we 
allow for some errors. In this sense we get a trade-off between the margin and the 
importance of a pattern in the training process (depending on the constant C 2: 0). 
If we choose C = 0 in Eq. (5), the original AdaBoost algorithm is retrieved. If C is 
chosen too high, the data is not taken seriously. We adopt a prior on the weights 
Wr(Zi) that punishes large weights in analogy to weight decay and choose 

€l ~ (t, c,. Wc(Zi) r (6) 

where the inner sum is the cumulative weight of the pattern in the previous iterations 
(we call it influence of a pattern - similar to Lagrange multipliers in SVMs) . By 
this ~!, AdaBoost is not changed for easy classifiable patterns, but is changed for 
difficult patterns. From Eq. (5), we can derive a new error function: 

I 

9reg(ct,lbt l) = ~exp{ -1~tlmg(zi,Ct) - C~f} (7) 

By this error function, we can control the trade-off between the weights, which the 
pattern had in the last iterations, and the achieved margin. The weight Wt(Zi) of a 
pattern is computed as the derivative ofEq. (7) subject to mg(zi, b t - 1 ) (cf. Eq. (4)) 
and is given by 

() exp {lbt-11(mg(zi,Ct-d - ~:-1)/2} 
Wt Zi = I { t 1 } . Ej =l exp Ibt-11(mg(zj, Ct-t} - ~j - )/2 

(8) 



568 G. Riitsch, T. Onoda and K.-R. Muller 

Table 1: Pseudocode description of the algorithms 

LP-AdaBoost(Z, T) I LPreg-AdaBoost(Z, T, C) I QPreg-AdaBoost(Z, T, C) 

Run Ada Boost on dataset Z to get T hypotheses h and their weights c 

C I . L {-I if h t (Xi) =1= Yi 
onstruct oss matnx i,t = 1 otherwise 

minimize -p 

S.t. E~=l CtLi,t ~ P 
Ct ~ 0, ECt = 1 

minimize -p+C2:·ei minimize IlbW +CE·ei 
T • T • S.t. 2:t=l CtLi ,t ~ P + ei S.t. Et=l btLi ,t ~ 1 - ei 

Ct ~ 0, E Ct = 1 b t ~ 0 
{i ~ 0 {i ~ 0 

Thus we can get an update rule for the weight of a training pattern [11] 

Wt(Zi) = Wt-l (Zi) exp{bt-1I(Yi =I ht- 1 (Xi») + C~:-2Ibt_21 - C~;-llbt_ll}. (9) 
It is more difficult to compute the weight bt of the t-th hypothesis analytically. 
However, we can get bt by a line search procedure over Eq. (7), which has an unique 
solution because 8~t greg> 0 is satisfied. This line search can be implemented very 
efficiently. With this line-search, we can now also use real-valued outputs of the 
base hypotheses, while the original AdaBoost algorithm could not (d. also [6]). 

Optimizing a given ensemble In Grove et al. [7], it was shown how to use 
linear programming to maximize the minimum margin for a given ensemble and 
LP-AdaBoost was proposed (table 1 left). This algorithm maximizes the mini­
mum margin on the training patterns. It achieves a hard margin (as AdaBoost 
asymptotically does) for small number of iterations. For the reasoning for a hard 
margin (section 3) this can not generalize well. If we introduce slack variables to 
LP-AdaBoost, one gets the algorithm LP reg-AdaBoost (table 1 middle) [11]. This 
modification allows that some patterns have lower margins than p (especially lower 
than 0). There is a trade-off: (a) make all margins bigger than p and (b) maximize 
p. This trade-off is controlled by the constant C. 
Another formulation of a optimization problem can be derived from the support vec­
tor algorithm. The optimization objective of a SVM is to find a function hW which 
minimizes a functional of the form E = IlwW + C 2:i ~i' where Yih(Xi) ~ 1 - ~i 
and the norm of the parameter vector w is the measure for the complexity of the 
hypothesis hW [14]. For ensemble learning we do not have such a measure of com­
plexity and so we use the norm of the hypotheses weight vector b. For Ibl = 1 this is 
a small value, if the elements are approximately equal (analogy to bagging) and has 
high values, when there are some strongly emphasized hypotheses (far away from 
bagging). Experimentally, we found that IIbl12 is often larger for more complex 
hypothesis. Thus, we can apply the optimization principles of SVMs to AdaBoost 
and get the algorithm QPreg-AdaBoost (table 1 right). We effectively use a linear 
SVM on top of the results of the base hypotheses. 

5 Experiments 

In order to evaluate the performance of our new algorithms, we make a compari­
son among the single RBF classifier, the original AdaBoost algorithm, AdaBoostreg 
(with RBF nets), LfQPreg-AdaBoost and a Support Vector Machine (with RBF 
kernel). We use ten artificial and real world datasets from the DCI and DELVE 
benchmark repositories: banana (toy dataset as in [9, 11]), breast cancer, image seg­
ment, ringnorm, flare sonar, splice, new-thyroid, titanic, twonorm, waveform. Some of 
the problems are originally not binary classification problems, hence a (random) 
partition into two classes was used. At first we generate 20 partitions into training 
and test set (mostly ~ 60% : 40%). On each partition we train the classifier and 
get its test set error. The performance is averaged and we get table 2. 



Regularizing AdaBoost 569 

Table 2: Comparison among the six methods: Single RBF classifier, AdaBoost(AB), 
AdaBoostreg (ABreg), L/QP reg-AdaBoost (L/QPR) and a Support Vector Machine(SVM) : 
Estimation of generalization error in % on 10 datasets (best method in bold face). Clearly, 
AdaBoostreg gives the best overall performance. For further explanation see text . 

RBF AB ABreg LPR QPR SVM 
Banana 10.9±0.5 12.3±0.7 lO.1±O.5 10.8±0.4 10.9±0.5 11.5±4.7 
Cancer 28.7±5.3 30.5±4.5 26.3±4.3 31.0±4.2 26.2±4.7 26.1±4.8 
Image 2.8±0.7 2.5±0.7 2.5±0.7 2.6±0.6 2.4±O.5 2.9±0.7 
Ringnorm 1.1±O.3 2.0±0.2 1.1±O.2 2.2±0.4 1.9±0.2 1.1±O.1 
FSonar 34.6±2.1 35.6±1.9 33.6±1.7 35.7±4.5 36.2±1.7 32.5±1.1 
Splice 1O.0±0.3 10.1±0.3 9.5±O.2 10.2±1.6 10.1±0.5 10.9±0.7 
Thyroid 4.8±2.4 4.4±1.9 4.4±2.1 4.4±2.0 4.4±2.2 4.8±2.2 
Titanic 23.4±1.7 22.7±1.2 22.5±1.0 22 .9±1.9 22.7±1.0 22.4±1.0 
Twonorm 2.8±0.2 3.1±0.3 2.1±2.1 3.4±0.6 3.0±0.3 3.0±0.2 
Waveform 10.7±1.0 10.8±0.4 9.9±0.9 10.6±1.0 10.1±0.5 9.8±O.3 
Mean '70 6.7 9.6 1.0 11.1 4.7 6.3 
Winner '70 16.4 8.2 28.5 15.0 15.3 16.6 

We used RBF nets with adaptive centers (some conjugate gradient iterations to 
optimize positions and widths of the centers) as base hypotheses as described in 
[1, 11]. In all experiments, we combined 200 hypotheses. Clearly, this number of 
hypotheses may be not optimal, however Adaboost with optimal early stopping 
is not better than AdaBoost.reg . The parameter C of the regularized versions of 
AdaBoost and the parameters (C, a) of the SVM are optimized by the first five 
training datasets. On each training set 5-fold-cross validation is used to find the 
best model for this dataset2 . Finally, the model parameters are computed as the 
median of the five estimations. This way of estimating the parameters is surely 
not possible in practice, but will make this comparison more robust and the results 
more reliable. The last but one line in Tab. 2 shows the line 'Mean %', which is 
computed as follows: For each dataset the average error rate of all classifier types 
are divided by the minimum error rate and 1 is subtracted. These resulting num­
bers are averaged over the 10 datasets. The last line shows the probabilities that a 
method wins, i.e. gives the smallest generalization error, on the basis of our exper­
iments (averaged over all ten datasets) . Our experiments on noisy data show that 
(a) the results of AdaBoost are in almost all cases worse than the single classifier 
(clear overfitting effect) and (b) the results of AdaBoostreg are in all cases (much) 
better than those of AdaBoost and better than that of the single classifier. Fur­
thermore, we see clearly, that (c) the single classifier wins as often as the SVM, (d) 
L/QPreg-AdaBoost improves the results of AdaBoost, (e) AdaBoostreg wins most 
often. L/QP reg-AdaBoost improves the results of AdaBoost in almost cases due 
to established the soft margin. But the results are not as good as the results of 
AdaBoostreg and the SVM, because the hypotheses generated by AdaBoost (aimed 
to construct a hard margin) may be not the appropriate ones generate a good soft 
margin. We also observe that quadratic programming gives slightly better results 
than linear programming. This may be due to the fact that the hypotheses coef­
ficients generated by LPreg-AdaBoost are more sparse (smaller ensemble). Bigger 
ensembles may have a better generalization ability (due to the reduction of variance 
[3]). The worse performance of SVM compared to AdaBoostreg and the unexpected 
tie between SVM and RBF net may be explained with (a) the fixed a of the RBF­
kernel (loosing multi-scale information), (b) coarse model selection, (c) worse error 
function ofthe SV algorithm (noise model). Sumarizing, AdaBoost is useful for low 
noise cases, where the classes are separable (as shown for OCR[13, 8]). AdaBoostreg 
extends the applicability of boosting to "difficult separable" cases and should be 
applied, if the data is noisy. 

2The parameters are only near-optimal. Only 10 values for each parameter are tested. 



570 G. Ratsch, T. Onoda and K.-R. Maller 

6 Conclusion 

We introduced three algorithms to alleviate the overfitting problems of boosting al­
gorithms for high noise data: (1) direct incorporation ofthe regularization term into 
the error function (Eq.(7)), use of (2) linear and (3) quadratic programming with 
constraints given by the slack variables. The essence of our proposal is to introduce 
slack variables for regularization in order to allow for soft margin classification in 
contrast to the hard margin classification used before. The slack variables basically 
allow to control how much we trust the data, so we are permitted to ignore outliers 
which would otherwise have spoiled our classification. This generalization is very 
much in the spirit of support vector machines that also trade-off the maximization 
of the margin and the minimization of the classification errors in the slack variables. 
In our experiments, AdaBoostreg showed a better overall generalization performance 
than all other algorithms including the Support Vector Machines. We conjecture 
that this unexpected result is mostly due to the fact that SVM can only use one CT 

and therefore loose scaling information. AdaBoost does not have this limitation. 
So far we balance our trust in the data and the margin maximization by cross val­
idation. Better would be, if we knew the "optimal" margin distribution that we 
could achieve for classifying noisy patterns, then we could of course balance the 
errors and the margin sizes optimally. 
In future works, we plan to establish more connections between AdaBoost and SVM. 
Acknowledgements: We thank for valuable discussions with A. Smola, B. 
Sch6lkopf, T. FrieB and D. Schuurmans. Partial funding from EC STORM project 
grant number 25387 is greatfully acknowledged. The breast cancer domain was 
obtained from the University Medical Centre, Inst. of Oncology, Ljubljana, Yu­
goslavia. Thanks go to M. Zwitter and M. Soklic for providing the data. 

References 

[1] C. M. Bishop. Neural Networks for Pattern Recognition. Clarendon, 1995. 
[2] L. Breiman. Bagging predictors. Machine Learning, 26(2):123- 140, 1996. 
[3] L. Breiman. Arcing classifiers. Tech.Rep.460, Berkeley Stat.Dept., 1997. 
[4] L. Breiman. Prediction games and arcing algorithms. Tech.Rep. 504, Berkeley 

Stat.Dept., 1997. 
[5] C. Cortes, V. Vapnik. Support vector network. Mach.Learn., 20:273-297,1995. 
[6] R. Schapire, Y. Singer. Improved Boosting Algorithms Using Confidence-rated 

Predictions. In Proc. of COLT'98. 
[7] A.J. Grove, D. Schuurmans. Boosting in the limit: Maximizing the margin of 

learned ensembles. In Proc. 15th Nat. Conf. on AI, 1998. To appear. 
[8] Y. LeCun et al. Learning algorithms for classification: A comparism on hand­

written digit recognistion. Neural Networks, pages 261-276, 1995. 
[9] T. Onoda, G. Ratsch, and K.-R. Muller. An asymptotic analysis of adaboost 

in the binary classification case. In Proc. of ICANN'98, April 1998. 
[10] J. Quinlan. Boosting first-order learning. In Proc. of the 7th Internat. Work­

shop on Algorithmic Learning Theory, LNAI, 1160,143-155. Springer. 
[11] G. Ratsch. Soft Margins for AdaBoost. August 1998. Royal Holloway College, 

Technical Report NC-TR-1998-021. Submitted to Machine Learning. 
[12] R. Schapire, Y. Freund, P. Bartlett, W. Lee. Boosting the margin: A new ex­

planation for the effectiveness of voting methods. Mach. Learn. , 148-156, 1998. 
[13] H. Schwenk and Y. Bengio . -Adaboosting neural networks: Application to on­

line character recognition. In ICANN'97, LNCS, 1327,967-972,1997. Springer. 
[14] V. Vapnik. The Nature of Statistical Learning Theory. Springer, 1995. 


