
Synergy and redundancy among brain 
cells of behaving monkeys 

Itay Gat· 
Institute of Computer Science and 

Center for Neural Computation 
The Hebrew University, Jerusalem 91904, Israel 

Abstract 

Naftali Tishby t 
NEC Research Institute 

4 Independence Way 
Princeton N J 08540 

Determining the relationship between the activity of a single nerve 
cell to that of an entire population is a fundamental question that 
bears on the basic neural computation paradigms. In this paper 
we apply an information theoretic approach to quantify the level 
of cooperative activity among cells in a behavioral context. It is 
possible to discriminate between synergetic activity of the cells vs . 
redundant activity, depending on the difference between the infor­
mation they provide when measured jointly and the information 
they provide independently. We define a synergy value that is pos­
itive in the first case and negative in the second and show that the 
synergy value can be measured by detecting the behavioral mode of 
the animal from simultaneously recorded activity of the cells . We 
observe that among cortical cells positive synergy can be found, 
while cells from the basal ganglia , active during the same task, do 
not exhibit similar synergetic activity. 
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1 Introduction 

Measuring ways by which several neurons in the brain participate in a specific 
computational task can shed light on fundamental neural information processing 
mechanisms. While it is unlikely that complete information from any macroscopic 
neural tissue will ever be available, some interesting insight can be obtained from 
simultaneously recorded cells in the cortex of behaving animals. The question we 
address in this study is the level of synergy, or the level of cooperation , among brain 
cells, as determined by the information they provide about the observed behavior 
of the animal. 

1.1 The experimental data 

We analyze simultaneously recorded units from behaving monkeys during a delayed 
response behavioral experiment. The data was collected at the high brain function 
laboratory of the Haddassah Medical School of the Hebrew universitY[l, 2]. In this 
task the monkey had to remember the location of a visual stimulus and respond by 
touching that location after a delay of 1-32 sec. Correct responses were rewarded 
by a drop of juice. In one set of recordings six micro-electrodes were inserted 
simultaneously to the frontal or prefrontal cortex[l, 3]. In another set of experiments 
the same behavioral paradigm was used and recording were taken from the striatum 
- which is the first station in basal ganglia (a sub-cortical ganglia)[2]. The cells 
recorded in the striatum were the tonically active neurons[2], which are known to 
be the cholinergic inter-neurons of the striatum. These cells are known to respond 
to reward. 

The monkeys were trained to perform the task in two alternating modes, "Go" and 
"No-Go" [1]. Both sets of behavioral modes can be detected from the recorded spike 
trains using several statistical modeling techniques that include Hidden Markov 
Models (HMM) and Post Stimulus Histograms (PSTH). The details of these detec­
tion methods are reported elsewhere[4 , 5]. For this paper it is important to know 
that we can significantly detect the correct behavior, for example in the "Go" vs. 
the "No-Go" correct detection is achieved about 90% of the time, where the random 
is 50% and the monkey's average performance is 95% correct on this task. 

2 Theoretical background 

Our measure of synergy level among cells is information theoretic and was recently 
proposed by Brenner et. aZ. [6] for analysis of spikes generated by a single neuron. 
This is the first application of this measure to quantify cooperativity among neurons. 

2.1 Synergy and redundancy 

A fundamental quantity in information theory is the mutual information between 
two random variables X and Y. It is defined as the cross-entropy (Kullbak-Liebler 
divergence) between the joint distribution of the variables , p(x, y), and the product 
of the marginal distributions p(x)p(y). As such it measures the statistical depen­
dence of the variables X and Y. It is symmetric in X and Y and has the following 
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familiar relations to their entropies[7]: 

I(X; Y) DKL [P(X, Y) I P(X) P(Y)] = ~ P( x, y) log (~~ ~~r~) ) (1) 

H(X) + H(Y) - H(X, Y) = H(X) - H(XIY) = H(Y) - H(YIX). 

When given three random variables X I, X 2 and Y, one can consider the 
mutual information between the joint variables (XI ,X2 ) and the variable Y, 
I(XI' X 2; Y) (notice the position of the semicolon), as well as the mutual infor­
mations I(XI; Y) and I(X2; Y). Similarly, one can consider the mutual informa­
tion between Xl and X 2 conditioned on a given value of Y = y, I(XI; X21y) = 
DKL[P(XI ,X2Iy)IP(Xl ly)P(X2Iy)]' as well as its average, the conditional mutual 
information , 

I(XI; X 2IY) = LP(y)Iy(XI; X2)' 
Y 

Following Brenner et. al.[6] we define the synergy level of Xl and X2 with respect 
to the variable Y as 

Syny(XI ,X2) = I(XI ,X2;Y) - (I(XI;Y) + I(X2;Y)), (2) 

with the natural generalization to more than two variables X . This expression can 
be rewritten in terms of entropies and conditional information as follows: 

Syny(XI , X 2) = (3) 

H(XI,X2) - H(XI,X2IY) - ((H(Xt) - H(XIIY)) + (H(X2) - H(X2IY))) 

H(XIIY) + H(X2IY) - H(XI' X2IY) + H(XI' X 2) - (H(Xd + H(X2)) 
" I " " ., ., 

Depends On Y Independent of Y 

When the variables exhibit positive synergy value, with respect to the variable Y, 
they jointly provide more information on Y than when considered independently, as 
expected in synergetic cases. Negative synergy values correspond to redundancy -
the variables do not provide independent information about Y. Zero synergy value 
is obtained when the variables are independent of Y or when there is no change in 
their dependence when conditioned on Y. We claim that this is a useful measure 
of cooperativity among neurons, in a given computational task. 

It is clear from Eq.( 3) that if 

Iy(XI; X 2) = I(XI; X 2) Vy E Y => Syny (Xl, X 2 ) = 0, 

since in that case L y P(y)Iy(XI;X2) = I(XI;X2). 

(4) 

In other words, the synergy value is not zero only if the statistical dependence, hence 
the mutual information between the variables, is affected by the value of Y . It is 
positive when the mutual information increase, on the average, when conditioned 
on Y, and negative if this conditional mutual information decrease. Notice that 
the value of synergy can be both positive and negative since information, unlike 
entropy, is not sub-additive in the X variables. 
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3 Synergy among neurons 

Our measure of synergy among the units is based on the ability to detect the 
behavioral mode from the recorded activity, as we discuss bellow. As discussed 
above, synergy among neurons is possible only if their statistical dependence change 
with time. An important case where synergy is not expected is pure "population 
coding" [8]. In this case the cells are expected to fire independently, each with its 
own fixed tuning curve. Our synergy value can thus be used to test if the recorded 
units are indeed participating in a pure population code of this kind, as hypothesized 
for certain motor cortical activity. 

Theoretical models of the cortex that clearly predict nonzero synergy include at­
tractor neural networks (ANN)[9] and synfire chain models(SFC)[3] . Both these 
models predict changes in the collective activity patterns, as neurons move between 
attractors in the ANN case, or when different synfire-chains of activity are born 
or disappear in the SFC case. To the extent that such changes in the collective 
activity depend on behavior, nonzero synergy values can be detected. It remains 
an interesting theoretical challenge to estimate the quantitative synergy values for 
such models and compare it to observed quantities. 

3.1 Time-dependent cross correlations 

In our previous studies[4] we demonstrated, using hidden Markov models of the 
activity, that the pairwise cross-correlations in the same data can change signifi­
cantly with time, depending on the underlying collective state of activity. These 
states, revealed by the hidden Markov model, in turn depend on the behavior and 
enable its prediction . Dramatic and fast changes in the cross-correlation of cells 
has also been shown by others[lO]. This finding indicate directly that the statistical 
dependence of the neurons can change (rapidly) with time, in a way correlated to 
behavior. This clearly suggests that nonzero synergy should be observed among 
these cortical units , relative to this behavior. In the present study this theoretical 
hypothesis is verified. 

3.2 Redundancy cases 

If on the other hand the conditioned mutual information equal zero for all behavioral 
modes, i.e. Iy(Xl; X2) = 0 Vy E Y, while I(Xl; X 2) > 0, we expect to get negative 
synergy, or redundancy among the cells, with respect to the behavior variable Y. 
We observed clear redundancy in another part of the brain, the basal ganglia, dur­
ing the same experiment, when the behavior was the pre-reward and post-reward 
activity. In this case different cells provide exactly the same information, which 
yields negative synergy values. 

4 Experimental results 

4.1 Synergy measurement in practice 

To evaluate the synergy value among different cells, it is necessary to estimate 
the conditional distribution p(ylx) where y is the current behavior and x represent 
a single trial of spike trains of the considered cells. Estimating this probability, 
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however, requires an underlying statistical model, or a represented of the spike 
trains. Otherwise there is never enough data since cortical spike trains are never 
exactly reproducible. In this work we choose the rate representation, which is the 
simplest to evaluate. The estimation of p(ylx) goes as follows: 

• For each of the M behavioral modes (Y1, Y2 .. , YM) collect spike train samples 
(the tmining data set). 

• Using the training sample, construct a Post Stimulus Time Histogram 
(PSTH), i.e. the rate as function of time, for each behavioral mode. 

• Given a spike train, outside of the training set, compute its probability to 
be result in each of the M modes. 

• The spike train considered correctly classified if the most probable mode is 
in fact the true behavioral mode, and incorrectly otherwise. 

• The fraction of correct classification, for all spike trains of a given behavioral 
mode Yi, is taken as the estimate of P(Yi Ix), and denoted pc., where Ci 1S 

the identity of the cells used in the computation. 

For the case of only two categories of behavior and for a uniform distribution of the 
different categories, the value of the entropy H(Y) is the same for all combinations of 
cells, and is simply H (Y) = - Ly p(y) log2 (p(y)) = log22 = 1. The full expression 
(in bits) for the synergy value can be thus written as follows: 

~p(x) [-~ Po"" log2(P"",)] ; (5) 

1+ ~P(x) [-~ Po, IOg,(P,,)] + ~ p(x) [-~ Po, IOg2(P,,)] , 

If the first expression is larger than the second than there is (positive) synergy and 
vice versa for redundancy. However there is one very important caveat. As we saw 
the computation of the mutual information is not done exactly, and what one really 
computes is only a lower bound. If the bound is tighter for multiple cell calculation, 
the method could falsely infer positive synergy, and if the bound is tighter for the 
single cell computation, the method could falsely infer negative synergy. In previous 
works we have shown that the method we use for this estimation is quite reasonable 
and robust[5], therefore, we believe that we have even a conservative (i.e. less 
positive) estimate of synergy. 

4.2 Observed synergy values 

In the first set of experiments we tried to detect the behavioral mode during the 
delay-period of correct trials. In this case the two types of behavior were the 
"Go" and the "No-Go" described in the introduction. An example of this detection 
problem is given in figure lAo In this figure there are 100 examples of multi-electrode 
recording of spike trains during the delay period. On the left is the "Go-mode" data 
and on the right the "No-Go mode", for two cells. On the lower part there is an 
example of two single spike trains that need to be classified by the mode models. 
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Figure 1: Raster displays of simultaneously recorded cells in the 2 different areas, 
in each area there were 2 behavioral modes. 

Table 1 gives some examples of detection results obtained by using 2 cells indepen­
dently, and by using their joint combination. It can be seen that the synergy is 
positive and significant. We examined 19 recording session of the same behavioral 
modes for two different animals and evaluated the synergy value. In 18 out of the 
19 sessions there was at least one example of significant positive synergy among the 
cells. 

For comparison we analyzed another set of experiments in which the data was 
recorded from the striatum in the basal ganglia. An example for this detection is 
shown in figure lB. The behavioral modes were the "pre-reward" vs. the "post­
reward" periods. Nine recording sessions for the two different monkeys were exam­
ined using the same detection technique. Although the detection results improve 
when the number of cells increase, in none of these recordings a positive synergy 
value was found. For most of the data the synergy value was close to zero, i.e. the 
mutual information among two cells jointly was close to the sum of the mutual infor­
mation of the independent cells, as expected when the cells exhibit (conditionally) 
independent activity. 

The prevailing difference between the synergy measurements in the cortex and in the 
TAN s' of the basal ganglia is also strengthen by the different mechanisms underlying 
those cells. The TANs' are assumed to be globally mediators of information in the 
striatum, a relatively simple task, whereas the information processed in the frontal 
cortex in this task is believed to be much more collective and complicated. Here we 
suggest a first handle for quantitative detection of such different neuronal activities. 
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Table 1: Examples of synergy among cortical neurons. For each example the mutual 
information of each cell separately is given together with the mutual information 
of the pair. In parenthesis the matching detection probability (average over p(ylx)) 
is also given. The last column gives the percentage of increase from the mutual 
information of the single cells to the mutual information of the pair. The table gives 
only those pairs for which the percentage was larger than 20% and the detection 
rate higher than 60%. 

Session Cells CellI Ce1l2 Both cells Syn (%) 

b116b 5,6 0.068 (64.84) 0.083 (66.80) 0.209 (76.17) 38 
bl21b 1,4 0.201 (73.74) 0.118 (69.70) 0.497 (87.88) 56 
bl21b 3,4 0.082 (66.67) 0.118 (69.70) 0.240 (77.78) 20 
bl26b 0,3 0.062 (62.63) 0.077 (66.16) 0.198 (75.25) 42 
bl26b 1,2 0.030 (60.10) 0.051 (63.13) 0.148 (72.22) 82 
cl77b 2,3 0 .054 (62.74) 0.013 (61.50) 0.081 (68.01) 20 
cr38b 0,2 0.074 (65.93) 0.058 (63.19) 0.160 (73.08) 21 
cr38b 0,4 0.074 (65.93) 0.042 (62.09) 0.144 (71.98) 24 
cr38b 3,4 0.051 (62.09) 0.042 (62.09) 0.111 (69.23) 20 
cr43b 0,1 0.070 (65.00) 0.063 (64.44) 0.181 (74.44) 36 
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