
Learning Macro-Actions in Reinforcement
Learning

Jette Randlttv
Niels Bohr Inst., Blegdamsvej 17,

University of Copenhagen,
DK-21 00 Copenhagen 0, Denmark

randlov@nbi.dk

Abstract

We present a method for automatically constructing macro-actions from
scratch from primitive actions during the reinforcement learning process.
The overall idea is to reinforce the tendency to perform action b after
action a if such a pattern of actions has been rewarded. We test the
method on a bicycle task, the car-on-the-hill task, the race-track task and
some grid-world tasks. For the bicycle and race-track tasks the use of
macro-actions approximately halves the learning time, while for one of
the grid-world tasks the learning time is reduced by a factor of 5. The
method did not work for the car-on-the-hill task for reasons we discuss
in the conclusion.

1 INTRODUCTION

A macro-action is a sequence of actions chosen from the primitive actions of the prob­
lem.1 Lumping actions together as macros can be of great help for solving large prob­
lems (Korf, 1985a,b; Gullapalli, 1992) and can sometimes greatly speed up learning (lba,
1989; McGovern, Sutton & Fagg, 1997; McGovern & Sutton, 1998; Sutton, Precup &
Singh, 1998; Sutton, Singh, Precup & Ravindran, 1999). Macro-actions might be essen­
tial for scaling up reinforcement learning to very large problems. Construction of macro­
actions by hand requires insight into the problem at hand. It would be more elegant and
useful if the agent itself could decide what actions to lump together (lba, 1989; McGovern
& Sutton, 1998; Sutton, Precup & Singh, 1998; Hauskrecht et al., 1998). (lba, 1989; Mc­
Govern & Sutton, 1998; Sutton, Precup & Singh, 1998; Hauskrecht et al., 1998).

IThis is a special case of definitions of macro-actions seen elsewhere. Some researchers take
macro-actions to consist of a policy, terminal conditions and an input set (Precup & Sutton, 1998;
Sutton, Precup & Singh, 1998; Sutton, Singh, Precup & Ravindran, 1999) while others define it as a
local policy (Hauskrecht et al., 1998).

1046 J. Randlev

2 ACTION-TO-ACTION MAPPING

In reinforcement learning we want to learn a mapping from states to actions, s -+ a that
maximizes the total expected reward (Sutton & Barto, 1998). Sometimes it might be of use
to learn a mapping from actions to actions as well. We believe that acting according to an
action-to-action mapping can be useful for three reasons:

1. During the early stages of learning the agent will enter areas of the state space it has
never visited before. If the agent acts according to an action-to-action mapping it might
be guided through such areas where there is yet no clear choice of action otherwise. In
other words it is much more likely that an action-to-action mapping could guide the agent
to perform almost optimally in states never visited than a random policy.

2. In some situations, for instance in an emergency, it can be useful to perform a certain
open-loop sequence of actions, without being guided by state information. Consider for in­
stance an agent learning to balance on a bicycle (Randl~ & Alstr0m, 1998). If the bicycle
is in an unbalanced state, the agent must forget about the position of the bicycle and carry
out a sequence of actions to balance the bicycle again. Some of the state information-the
position of the bicycle relative to some goal-does not matter, and might actually distract
the agent, while the history of the most recent actions might contain just the needed infor­
mation to pick the next action.

3. An action-to-action mapping might lead the agent to explore the relevant areas of the
state space in an efficient way instead of just hitting them by chance.

We therefore expect that learning an action-to-action mapping in addition to a state-action
mapping can lead to faster overall learning. Even though the system has the Markov prop­
erty, it may be useful to remember a bit of the action history. We want the agent to perform
a sequence of actions while being aware of the development of the states, but not only being
controlled by the states.

Many people have tried to deal with imperfect state information by adding memory of
previous states and actions to the information the agent receives (Andreae & Cashin, 1969;
McCallum, 1995; Hansen, Barto & Zilberstein, 1997; Burgard et aI., 1998). In this work
we are not specially concerned with non-Markov problems. However the results in this
paper suggest that some methods for partially observable MDP could be applied to MDPs
and result in faster learning.

The difficult part is how to combine the suggestion made by the action-to-action mapping
with the conventional state-to-action mapping. Obviously we do not want to learn the
mapping (Stl at-l) -+ at on tabular form, since that would destroy the possibility of using
the action-to-action mapping generalisation over the state space.

In our approach we decided to learn two value mappings. The mapping Q 8 is the conven­
tional Q-value normally used for state-to-action mapping, while the mapping Q a represents
the value belonging to the action-to-action mapping. When making a choice, we add the
Q-values of the suggestions made by the two mappings, normalize and use the new values
to pick an action in the usual way:

Here Q is the Q-value that we actually use to pick the next action. The parameter {3 deter­
mines the influence of the action-to-action mapping. For {3 = 0 we are back with the usual
Q-values. The idea is to reinforce the tendency to perform action b after action a if such a
pattern of actions is rewarded. In this way the agent forms habits or macro-actions and it
will sometimes act according to them.

Learning Macro-Actions in Reinforcement Learning 1047

3 RESULTS

How do we implement an action-to-action mapping
and the Q-values? Many algorithms have been de­
veloped to find near optimal state-to-action mappings
on a trial-and-error basis. An example of such a
algorithm is Sarsa(A), developed by Rummery and
Niranjan (Rummery & Niranjan, 1994; Rummery,
1995). We use Sarsa(A) with replacing eligibility
traces (Singh & Sutton, 1996) and table look-up. El­
igibility traces are attached to the Qa-values-one
for each action-action pair.2 During learning the Qs Figure 1: One can think of
and Qa-values are both adjusted according to the the action-to-action mapping in

11 TD r Q- () terms of weights between output overa error Ut = Tt+l + "I t St+l,at+l -
- neurons in a network calculating

Qt(st,at). The update for the Qa-valueshasthe form th Q I
~Qa(at-l' at) = 13 0 e(at-l, at). For description of e -va ue.
the Sarsa(A)-algorithm see Rummery (1995) or Sutton & Barto (1998). Figure 1 shows the
idea in terms of a neural network with no hidden layers. The new Qa-values correspond to
weights from output neurons to output neurons.

3.1 THE BICYCLE

We first tested the new Q-values on a bicycle system. To solve this problem the agent has
to learn to balance a bicycle for 1000 seconds and thereby ride 2.8 km. At each time step
the agent receives information about the state of the bicycle: the angle and angular velocity
of the handlebars, the angle, angular velocity and angular acceleration of the angle of the
bicycle from vertical.

The agent chooses two basic actions: the torque
that should be applied to the handle bars, and
how much the centre of mass should be displaced
from the bicycle's plan-a total of 9 possible ac­
tions (Randl0\' & Alstr0m, 1998). The reward at
each time step is 0 unless the bicycle has fallen,
in which case it is -1. The agent uses a = 0.5,
"I = 0.99 and A = 0.95. For further descrip­
tion and the equations for the system we refer the
reader to the original paper. Figure 2 shows how
the learning time varies with the value of 13. The
error bars show the standard error in all graphs.
For small values of 13 (~ 0.03) the agent learns
the task faster than with usual Sarsa(A) (13 = 0).
As expected, large values of 13 slow down learn­
ing.

3.2 THE CAR ON THE mLL

2500

~

12000
Q)

,§ 1500
~

j 1000

500~~~~~~~~~~~~ o 0.02 0.04 0.06 0.08 0.1
{3

Figure 2: Learning time as a function
of the parameter 13 for the bicycle ex­
periment. Each point is an average of
200 runs.

The second example is Boyan and Moore's mountain-car task (Boyan & Moore, 1995;
Singh & Sutton, 1996; Sutton, 1996). Consider driving an under-powered car up a steep
mountain road. The problem is that gravity is stronger than the car's engine, and the car
cannot accelerate up the slope. The agent must first move the car away from the goal and

2If one action is taken in a state, we allow the traces for the other actions to continue decaying
instead of cutting them to 0, contrary to Singh and Sutton (Singh & Sutton, 1996).

1048 1. Randlev

up the opposite slope, and then apply full throttle and build up enough momentum to reach
the goal. The reward at each time step is -1 until the agent reaches the goal, where it
receives reward O. The agent must choose one of three possible actions at each time step:
full thrust forward, no thrust, or full thrust backwards. Refer to Singh & Sutton (1996) for
the equations of the task.

We used one of the Sarsa-agents with five 9 x 9
CMAC tilings that have been thoroughly exam­
ined by Singh & Sutton (1996). The agent's
parameters are >. = 0.9, a = 0.7, 'Y = 1, and
a greedy selection of actions. (These are the
best values found by Singh and Sutton.) As in
Singh and Sutton's treatment of the problem, all
agents were tried for 20 trials, where a trial is
one run from a randomly selected starting state
to the goal. All the agents used the same set of
starting states. The performance measure is the
average trial time over the first 20 trials. Figure 3
shows results for two of our simulations. Obvi­
ously the action-to-action weights are of no use
to the agent, since the lowest point is at (3 = o.

3.3 THE RACE TRACK PROBLEM

In the race track problem, which originally was
presented by Barto, Bradtke & Singh (1995),
the agent controls a car in a race track. The
agent must guide the car from the start line
to the finish line in the least number of steps
possible. The exact position on the start line
is randomly selected. The state is given by
the position and velocity (Pz'PJI' Vz , vJI) (all
integer values). The total number of reachable

OOO~--~--~--~----~--~

700

~ 600

!500
gs 400

~300
~ 200f-~ __ "'­
c(

100

Ol~~~~~~~~-.~--~
0.02 0.04(3 0.06 0.08 0.1

Figure 3: Average trial time of the 20
trials as a function of the parameter (3
for the car on the hill. Each point is
an average of 200 runs.

Figure 4: An example of a near­
optimal path for the race-track prob­
lem. Starting line to the left and fin­
ish line at the upper right.

states is 9115 for the track shown in Fig. 4. At each step, the car can accelerate with
a E {-1, 0 + 1} in both dimensions. Thus, the agent has 9 possible combinations
of actions to choose from. Figure 4 shows positions on a near-optimal path. The
agent receives a reward of -1 for each step it makes without reaching the goal, and - 2
for hitting the boundary of the track. Besides the punishment for hitting the boundary of the
track, and the fact that the agent's choice of ac­
tion is always carried out, the problem is as
stated in Barto, Bradtke & Singh (1995) and
Rummery (1995). The agent's parameters are
a = 0.5, >. = 0.8 and 'Y = 0.98.

The learning process is divided into epochs
consisting of 10 trials each. We consider the
task learned if the agent has navigated the car
from start to goal in an average of less than 20
time steps for one full epoch. The learning time
is defined as the number of the first epoch for
which the criterion is met. This learning cri­
terion emphasizes stable learning-the agent
needs to be able to solve the problem several
times in a row.

{3

Figure 5: Learning time as a function
of the parameter (3 for the race track.
Each point is an average of 200 runs.

Learning Macro-Actions in Reinforcement Learning 1049

0.5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

~ ~

Figure 6: Learning time as a function of the parameter {3 for grid-world tasks: A 3-
dimensional grid-world with 216 states (left) and a 4-dimensional grid-world with 256
states (right). All points are averages of 50 runs.

Figure 5 shows how the learning time varies with the value of {3. For a large range of
small values of {3 we see a considerable reduction in learning time from 11.5 epochs to 4.2
epochs. As before, large values of {3 slow down learning.

3.4 GRID-WORLD TASKS

We tried the new method on a set of grid­
world problems in 3, 4 and 5 dimensions. In
all the problems the starting point is located at
(1,1, ...). For 3 dimensions the goal is located
at (4,6,4), in 4 dimensions at (2,4,2,4) and in
5 dimensions at (2,4,2,4,2).

o 0.2 0.4 0.6 0.8

~

For a d-dimensional problem, the agent has 2d
actions to choose from. Action 2i - 1 is to move
by -1 in the ith dimension, and action 2i is to
move by + 1 in the ith dimension. The agent re­
ceives a reward of -0.1 for each step it makes
without reaching the goal, and + 1 for reach­
ing the goal. If the agent tries to step outside
the boundary of the world it maintains its po­
sition. The 3-dimensional problem takes place
in a 6 x 6 x 6 grid-world, while the 4- and 5-
dimensional worlds have each dimension of size

Figure 7: Learning time as a func-
tion of the parameter {3 for a 5-
dimensional grid-world with 1024
states. All points are averages of 50
runs.

4. Again, the learning process is divided into epochs consist­
ing of 10 trials each. The task is considered learned if the agent
has navigated from start to goal in an average of less than some
fixed number (15 for 3 dimensions, 19 for 4 and 50 for 5 di­
mensions) for one full epoch. The agent uses 0: = 0.5,.A = 0.9
and "y = 0.98.

Figures 6 and 7 show our results for the grid-world tasks. The
learning time is reduced a lot. The usefullness of our new
method seems to improve with the number of actions: the more
actions the better it works.

Figure 8 shows one of the more clear (but not untypical) set of
values for the action-to-action weights for the 3-dimensional

6

5

4

at 3

2

1 2 3 4 5 6
at-l

Figure 8: The values
of the action-to-action
weights; the darker the
square the stronger the
relationship.

1050 J. RandZfiJv

problem. Recommended actions are marked with a white 'X'. The agent has learned two
macro-actions. If the agent has performed action number 4 it will continue to perform
action 4 all other things being equal. The other macro-action consists of cycling between
action 2 and 6. This is a reasonable choice, as one route to the goal consists of performing
the actions (44444) and then (262626).

3.5 A TASK WITH MANY ACTIONS

Finally we tried a problem with a large
number of actions. The world is a 10
times 10 meter square. Instead of pick­
ing a dimension to advance in, the agent
chooses a direction. The angular space
consists of 36 parts of 10°. The exact po­
sition of the agent is discreetized in boxes
of 0.1 times 0.1 meter. The goal is a
square centered at (9.5,7.5) with sides
measuring 0.4 m. The agent moves 0.3
m per time step, and receives a reward of
+ 1 for reaching the goal and -0.1 other­
wise. The task is considered learned if the
agent has navigated from start to goal in
an average of less than 200 time steps for
one full epoch (10 trials).

1000

1'----"'------'----"'--------'
o 0.5 1.5 2

Figure 9: Learning time as a function of the
parameter {3. All points are averages of 50
runs. Note the logarithmic scale.

Figure 9 shows the learning curve. The learning time is reduced by a factor of 147 from
397 (±7) to 2.7 (±0.2); The only real difference compared to the grid-world problems is
the number of actions. The results therefore indicate that the larger the number of actions
the better the method works.

4 CONCLUSION AND DISCUSSION

We presented a new method for calculating Q-values that mix the conventional Q-values
for the state-to-action mapping with Q-values for an action-to-action mapping. We tested
the method on a number of problems and found that for all problems except one, the method
reduces the total learning time. Furthermore, the agent found macros and learned them. A
value function based on values from both state-action and action-action pairs is not guar­
anteed to converge. Indeed for large values of {3 the method seems unstable, with large
variances in the learning time. A good strategy could be to start with a high initial {3
and gradually decrease the value. The empirical results indicate that the usefulness of the
method depends on the number of actions: the more actions the better it works. This is also
intuitively reasonable, as the information content of the knowledge that a particular action
was performed is higher if the agent has more actions to choose from.

Acknowledgment

The author wishes to thank Andrew G. Barto, Preben Alstr0m, Doina Precup and Amy
McGovern for useful comments and suggestions on earlier drafts of this paper and Richard
Sutton and Matthew Schlesinger for helpful discussion. Also a lot of thanks to David Cohen
for his patience with later than last-minute corrections.

Learning Macro-Actions in Reinforcement Learning 1051

References
Andreae, J. H. & Cashin, P. M. (1969). A learning machine with monologue. International Journal

of Man-Machine Studies, I, 1-20.
Barto, A. G., Bradtke, S. J. & Singh, S. (1995). Learning to act using real-time dynamic program­

ming. Anificial Intelligence, 72, 81-138.
Boyan, J. A. & Moore, A. W. (1995). Generalization in reinforcement learning: Safely approximating

the value function. In NIPS 7. (pp. 369-376). The MIT Press.
Burgard, W., Cremers, A. B., Fox, D., Haehnel, D., Lakemeyer, G., Schulz, D., Steiner, W. & Thrun,

S. (1998). The interactive museum tour-guide robot. In Fifteenth National Conference on
Artificial Intelligence.

Gullapalli, V. (1992). Reinforcement Learning and Its Application to Control. PhD thesis, University
of Massachusetts. COINS Technical Report 92-10.

Hansen, E., Barto, A, & Zilberstein, S. (1997) Reinforcement learning for mixed open-loop and
closed-loop control. In NIPS 9. The MIT Press.

Hauskrecht, M., Meuleau, N., Boutilier, C., Kaelbling, L. P. & Dean, T. (1998). Hierarchical so­
lution of markov decision processes using macro-actions. In Proceedings of the Fourteenth
International Conference on Uncertainty In Anificial Intelligence.

Iba, G. A. (1989). A heuristic approach to the discovery of macro-operators. Machine Learning, 3.
Korf, R. E. (1985a). Learning to solve problems by searching for macro-operators. Research Notes

in Anificial Intelligence, 5.
Karf, R. E. (1985b). Macro-operators: A weak method for learning. Anificial Intelligence, 26, 35-77.
McCallum, R. A. (1995). Reinforcement Learning with Selective Perception and Hidden State. PhD

thesis, University of Rochester.
McGovern, A. & Sutton, R. S. (1998). Macro-actions in reinforcement learning: An empirical anal­

ysis. Technical Report 98-70, University of Massachusetts.
McGovern, A., Sutton, R. S. & Fagg, A. H. (1997). Roles of macro-actions in accelerating reinforce­

ment learning. In 1997 Grace Hopper Celebration of Women in Computing.
Precup, D. & Sutton, R. S. (1998). Multi-time models for temporally abstract planning. In NIPS 10.

The MIT Press.
Randl0\', J. & Alstr9Jm, P. (1998). Learning to drive a bicycle using reinforcement learning and

shaping. In Proceedings of the 15th International Conference on Machine Learning.
Rummery, G. A. (1995). Problem Solving with Reinforcement Learning. PhD thesis, Cambridge

University Engineering Department.
Rummery, G. A. & Niranjan, M. (1994). On-line Q-Iearning using connectionist systems. Technical

Report CUED/F-INFENG/TR 166, Engineering Department, Cambridge University.
Singh, S. P. & Sutton, R. S. (1996). Reinforcement learning with replacing eligibility traces. Machine

Learning, 22,123-158.
Sutton, R. S. (1996). Generalization in reinforcement learning: Successful examples using sparse

coarse coding. In NIPS 8. (pp. 1038-1044). The MIT Press.
Sutton, R. S. & Barto, A. G. (1998). Introduction to Reinforcement Learning. MIT Press/Bradford

Books.
Sutton, R. S., Precup, D. & Singh, S. (1998). Between MDPs and semi-MDPs: Learning, planning,

and representing knowledge at multiple temporal scales. Technical Report UM-CS-1998-074,
Department of Computer Science, UMass.

Sutton, R. S., Singh, S., Precup, D. & Ravindran, B. (1999). Improved switching among temporally
abstract actions. In NIPS II. The MIT Press.

