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Abstract 

We present a method for automatically constructing macro-actions from 
scratch from primitive actions during the reinforcement learning process. 
The overall idea is to reinforce the tendency to perform action b after 
action a if such a pattern of actions has been rewarded. We test the 
method on a bicycle task, the car-on-the-hill task, the race-track task and 
some grid-world tasks. For the bicycle and race-track tasks the use of 
macro-actions approximately halves the learning time, while for one of 
the grid-world tasks the learning time is reduced by a factor of 5. The 
method did not work for the car-on-the-hill task for reasons we discuss 
in the conclusion. 

1 INTRODUCTION 

A macro-action is a sequence of actions chosen from the primitive actions of the prob­
lem.1 Lumping actions together as macros can be of great help for solving large prob­
lems (Korf, 1985a,b; Gullapalli, 1992) and can sometimes greatly speed up learning (lba, 
1989; McGovern, Sutton & Fagg, 1997; McGovern & Sutton, 1998; Sutton, Precup & 
Singh, 1998; Sutton, Singh, Precup & Ravindran, 1999). Macro-actions might be essen­
tial for scaling up reinforcement learning to very large problems. Construction of macro­
actions by hand requires insight into the problem at hand. It would be more elegant and 
useful if the agent itself could decide what actions to lump together (lba, 1989; McGovern 
& Sutton, 1998; Sutton, Precup & Singh, 1998; Hauskrecht et al., 1998). (lba, 1989; Mc­
Govern & Sutton, 1998; Sutton, Precup & Singh, 1998; Hauskrecht et al., 1998). 

IThis is a special case of definitions of macro-actions seen elsewhere. Some researchers take 
macro-actions to consist of a policy, terminal conditions and an input set (Precup & Sutton, 1998; 
Sutton, Precup & Singh, 1998; Sutton, Singh, Precup & Ravindran, 1999) while others define it as a 
local policy (Hauskrecht et al., 1998). 
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2 ACTION-TO-ACTION MAPPING 

In reinforcement learning we want to learn a mapping from states to actions, s -+ a that 
maximizes the total expected reward (Sutton & Barto, 1998). Sometimes it might be of use 
to learn a mapping from actions to actions as well. We believe that acting according to an 
action-to-action mapping can be useful for three reasons: 

1. During the early stages of learning the agent will enter areas of the state space it has 
never visited before. If the agent acts according to an action-to-action mapping it might 
be guided through such areas where there is yet no clear choice of action otherwise. In 
other words it is much more likely that an action-to-action mapping could guide the agent 
to perform almost optimally in states never visited than a random policy. 

2. In some situations, for instance in an emergency, it can be useful to perform a certain 
open-loop sequence of actions, without being guided by state information. Consider for in­
stance an agent learning to balance on a bicycle (Randl~ & Alstr0m, 1998). If the bicycle 
is in an unbalanced state, the agent must forget about the position of the bicycle and carry 
out a sequence of actions to balance the bicycle again. Some of the state information-the 
position of the bicycle relative to some goal-does not matter, and might actually distract 
the agent, while the history of the most recent actions might contain just the needed infor­
mation to pick the next action. 

3. An action-to-action mapping might lead the agent to explore the relevant areas of the 
state space in an efficient way instead of just hitting them by chance. 

We therefore expect that learning an action-to-action mapping in addition to a state-action 
mapping can lead to faster overall learning. Even though the system has the Markov prop­
erty, it may be useful to remember a bit of the action history. We want the agent to perform 
a sequence of actions while being aware of the development of the states, but not only being 
controlled by the states. 

Many people have tried to deal with imperfect state information by adding memory of 
previous states and actions to the information the agent receives (Andreae & Cashin, 1969; 
McCallum, 1995; Hansen, Barto & Zilberstein, 1997; Burgard et aI., 1998). In this work 
we are not specially concerned with non-Markov problems. However the results in this 
paper suggest that some methods for partially observable MDP could be applied to MDPs 
and result in faster learning. 

The difficult part is how to combine the suggestion made by the action-to-action mapping 
with the conventional state-to-action mapping. Obviously we do not want to learn the 
mapping (Stl at-l) -+ at on tabular form, since that would destroy the possibility of using 
the action-to-action mapping generalisation over the state space. 

In our approach we decided to learn two value mappings. The mapping Q 8 is the conven­
tional Q-value normally used for state-to-action mapping, while the mapping Q a represents 
the value belonging to the action-to-action mapping. When making a choice, we add the 
Q-values of the suggestions made by the two mappings, normalize and use the new values 
to pick an action in the usual way: 

Here Q is the Q-value that we actually use to pick the next action. The parameter {3 deter­
mines the influence of the action-to-action mapping. For {3 = 0 we are back with the usual 
Q-values. The idea is to reinforce the tendency to perform action b after action a if such a 
pattern of actions is rewarded. In this way the agent forms habits or macro-actions and it 
will sometimes act according to them. 
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3 RESULTS 

How do we implement an action-to-action mapping 
and the Q-values? Many algorithms have been de­
veloped to find near optimal state-to-action mappings 
on a trial-and-error basis. An example of such a 
algorithm is Sarsa(A), developed by Rummery and 
Niranjan (Rummery & Niranjan, 1994; Rummery, 
1995). We use Sarsa(A) with replacing eligibility 
traces (Singh & Sutton, 1996) and table look-up. El­
igibility traces are attached to the Qa-values-one 
for each action-action pair.2 During learning the Qs Figure 1: One can think of 
and Qa-values are both adjusted according to the the action-to-action mapping in 

11 TD r Q- ( ) terms of weights between output overa error Ut = Tt+l + "I t St+l,at+l -
- neurons in a network calculating 

Qt(st,at). The update for the Qa-valueshasthe form th Q I 
~Qa(at-l' at) = 13 0 e(at-l, at). For description of e -va ue. 
the Sarsa(A)-algorithm see Rummery (1995) or Sutton & Barto (1998). Figure 1 shows the 
idea in terms of a neural network with no hidden layers. The new Qa-values correspond to 
weights from output neurons to output neurons. 

3.1 THE BICYCLE 

We first tested the new Q-values on a bicycle system. To solve this problem the agent has 
to learn to balance a bicycle for 1000 seconds and thereby ride 2.8 km. At each time step 
the agent receives information about the state of the bicycle: the angle and angular velocity 
of the handlebars, the angle, angular velocity and angular acceleration of the angle of the 
bicycle from vertical. 

The agent chooses two basic actions: the torque 
that should be applied to the handle bars, and 
how much the centre of mass should be displaced 
from the bicycle's plan-a total of 9 possible ac­
tions (Randl0\' & Alstr0m, 1998). The reward at 
each time step is 0 unless the bicycle has fallen, 
in which case it is -1. The agent uses a = 0.5, 
"I = 0.99 and A = 0.95. For further descrip­
tion and the equations for the system we refer the 
reader to the original paper. Figure 2 shows how 
the learning time varies with the value of 13. The 
error bars show the standard error in all graphs. 
For small values of 13 (~ 0.03) the agent learns 
the task faster than with usual Sarsa(A) (13 = 0). 
As expected, large values of 13 slow down learn­
ing. 

3.2 THE CAR ON THE mLL 

2500 

~ 

12000 
Q) 

,§ 1500 
~ 

j 1000 

500~~~~~~~~~~~~ o 0.02 0.04 0.06 0.08 0.1 
{3 

Figure 2: Learning time as a function 
of the parameter 13 for the bicycle ex­
periment. Each point is an average of 
200 runs. 

The second example is Boyan and Moore's mountain-car task (Boyan & Moore, 1995; 
Singh & Sutton, 1996; Sutton, 1996). Consider driving an under-powered car up a steep 
mountain road. The problem is that gravity is stronger than the car's engine, and the car 
cannot accelerate up the slope. The agent must first move the car away from the goal and 

2If one action is taken in a state, we allow the traces for the other actions to continue decaying 
instead of cutting them to 0, contrary to Singh and Sutton (Singh & Sutton, 1996). 
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up the opposite slope, and then apply full throttle and build up enough momentum to reach 
the goal. The reward at each time step is -1 until the agent reaches the goal, where it 
receives reward O. The agent must choose one of three possible actions at each time step: 
full thrust forward, no thrust, or full thrust backwards. Refer to Singh & Sutton (1996) for 
the equations of the task. 

We used one of the Sarsa-agents with five 9 x 9 
CMAC tilings that have been thoroughly exam­
ined by Singh & Sutton (1996). The agent's 
parameters are >. = 0.9, a = 0.7, 'Y = 1, and 
a greedy selection of actions. (These are the 
best values found by Singh and Sutton.) As in 
Singh and Sutton's treatment of the problem, all 
agents were tried for 20 trials, where a trial is 
one run from a randomly selected starting state 
to the goal. All the agents used the same set of 
starting states. The performance measure is the 
average trial time over the first 20 trials. Figure 3 
shows results for two of our simulations. Obvi­
ously the action-to-action weights are of no use 
to the agent, since the lowest point is at (3 = o. 

3.3 THE RACE TRACK PROBLEM 

In the race track problem, which originally was 
presented by Barto, Bradtke & Singh (1995), 
the agent controls a car in a race track. The 
agent must guide the car from the start line 
to the finish line in the least number of steps 
possible. The exact position on the start line 
is randomly selected. The state is given by 
the position and velocity (Pz'PJI' Vz , vJI) (all 
integer values). The total number of reachable 
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Figure 3: Average trial time of the 20 
trials as a function of the parameter (3 
for the car on the hill. Each point is 
an average of 200 runs. 

Figure 4: An example of a near­
optimal path for the race-track prob­
lem. Starting line to the left and fin­
ish line at the upper right. 

states is 9115 for the track shown in Fig. 4. At each step, the car can accelerate with 
a E {-1, 0 + 1} in both dimensions. Thus, the agent has 9 possible combinations 
of actions to choose from. Figure 4 shows positions on a near-optimal path. The 
agent receives a reward of -1 for each step it makes without reaching the goal, and - 2 
for hitting the boundary of the track. Besides the punishment for hitting the boundary of the 
track, and the fact that the agent's choice of ac­
tion is always carried out, the problem is as 
stated in Barto, Bradtke & Singh (1995) and 
Rummery (1995). The agent's parameters are 
a = 0.5, >. = 0.8 and 'Y = 0.98. 

The learning process is divided into epochs 
consisting of 10 trials each. We consider the 
task learned if the agent has navigated the car 
from start to goal in an average of less than 20 
time steps for one full epoch. The learning time 
is defined as the number of the first epoch for 
which the criterion is met. This learning cri­
terion emphasizes stable learning-the agent 
needs to be able to solve the problem several 
times in a row. 

{3 

Figure 5: Learning time as a function 
of the parameter (3 for the race track. 
Each point is an average of 200 runs. 
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Figure 6: Learning time as a function of the parameter {3 for grid-world tasks: A 3-
dimensional grid-world with 216 states (left) and a 4-dimensional grid-world with 256 
states (right). All points are averages of 50 runs. 

Figure 5 shows how the learning time varies with the value of {3. For a large range of 
small values of {3 we see a considerable reduction in learning time from 11.5 epochs to 4.2 
epochs. As before, large values of {3 slow down learning. 

3.4 GRID-WORLD TASKS 

We tried the new method on a set of grid­
world problems in 3, 4 and 5 dimensions. In 
all the problems the starting point is located at 
(1,1, ... ). For 3 dimensions the goal is located 
at (4,6,4), in 4 dimensions at (2,4,2,4) and in 
5 dimensions at (2,4,2,4,2). 

o 0.2 0.4 0.6 0.8 

~ 

For a d-dimensional problem, the agent has 2d 
actions to choose from. Action 2i - 1 is to move 
by -1 in the ith dimension, and action 2i is to 
move by + 1 in the ith dimension. The agent re­
ceives a reward of -0.1 for each step it makes 
without reaching the goal, and + 1 for reach­
ing the goal. If the agent tries to step outside 
the boundary of the world it maintains its po­
sition. The 3-dimensional problem takes place 
in a 6 x 6 x 6 grid-world, while the 4- and 5-
dimensional worlds have each dimension of size 

Figure 7: Learning time as a func-
tion of the parameter {3 for a 5-
dimensional grid-world with 1024 
states. All points are averages of 50 
runs. 

4. Again, the learning process is divided into epochs consist­
ing of 10 trials each. The task is considered learned if the agent 
has navigated from start to goal in an average of less than some 
fixed number (15 for 3 dimensions, 19 for 4 and 50 for 5 di­
mensions) for one full epoch. The agent uses 0: = 0.5,.A = 0.9 
and "y = 0.98. 

Figures 6 and 7 show our results for the grid-world tasks. The 
learning time is reduced a lot. The usefullness of our new 
method seems to improve with the number of actions: the more 
actions the better it works. 

Figure 8 shows one of the more clear (but not untypical) set of 
values for the action-to-action weights for the 3-dimensional 
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Figure 8: The values 
of the action-to-action 
weights; the darker the 
square the stronger the 
relationship. 
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problem. Recommended actions are marked with a white 'X'. The agent has learned two 
macro-actions. If the agent has performed action number 4 it will continue to perform 
action 4 all other things being equal. The other macro-action consists of cycling between 
action 2 and 6. This is a reasonable choice, as one route to the goal consists of performing 
the actions (44444) and then (262626). 

3.5 A TASK WITH MANY ACTIONS 

Finally we tried a problem with a large 
number of actions. The world is a 10 
times 10 meter square. Instead of pick­
ing a dimension to advance in, the agent 
chooses a direction. The angular space 
consists of 36 parts of 10°. The exact po­
sition of the agent is discreetized in boxes 
of 0.1 times 0.1 meter. The goal is a 
square centered at (9.5,7.5) with sides 
measuring 0.4 m. The agent moves 0.3 
m per time step, and receives a reward of 
+ 1 for reaching the goal and -0.1 other­
wise. The task is considered learned if the 
agent has navigated from start to goal in 
an average of less than 200 time steps for 
one full epoch (10 trials). 

1000 

1'----"'------'----"'--------' 
o 0.5 1.5 2 

Figure 9: Learning time as a function of the 
parameter {3. All points are averages of 50 
runs. Note the logarithmic scale. 

Figure 9 shows the learning curve. The learning time is reduced by a factor of 147 from 
397 (±7) to 2.7 (±0.2); The only real difference compared to the grid-world problems is 
the number of actions. The results therefore indicate that the larger the number of actions 
the better the method works. 

4 CONCLUSION AND DISCUSSION 

We presented a new method for calculating Q-values that mix the conventional Q-values 
for the state-to-action mapping with Q-values for an action-to-action mapping. We tested 
the method on a number of problems and found that for all problems except one, the method 
reduces the total learning time. Furthermore, the agent found macros and learned them. A 
value function based on values from both state-action and action-action pairs is not guar­
anteed to converge. Indeed for large values of {3 the method seems unstable, with large 
variances in the learning time. A good strategy could be to start with a high initial {3 
and gradually decrease the value. The empirical results indicate that the usefulness of the 
method depends on the number of actions: the more actions the better it works. This is also 
intuitively reasonable, as the information content of the knowledge that a particular action 
was performed is higher if the agent has more actions to choose from. 
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