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Abstract 

We study the dynamics of supervised learning in layered neural net­
works, in the regime where the size p of the training set is proportional 
to the number N of inputs. Here the local fields are no longer described 
by Gaussian distributions. We use dynamical replica theory to predict 
the evolution of macroscopic observables, including the relevant error 
measures, incorporating the old formalism in the limit piN --t 00. 

1 INTRODUCTION 

Much progress has been made in solving the dynamics of supervised learning in layered 
neural networks, using the strategy of statistical mechanics: by deriving closed laws for the 
evolution of suitably chosen macroscopic observables (order parameters) in the limit of an 
infinite system size [1, 2, 3, 4]. For a recent review and guide to references see e.g. [5]. 
The main successful procedure developed so far is built on the following cornerstones: 
• The task to be learned is defined by a 'teacher', which is itself a neural network. This in­
duces a natural set of order parameters (mutual weight vector overlaps between the teacher 
and the trained, 'student', network). 
• The number of network inputs is infinitely large. This ensures that fluctuations in the 
order parameters will vanish, and enables usage of the central limit theorem. 
• The number of 'hidden' neurons is finite, in both teacher and student, ensuring a finite 
number of order parameters and an insignificant cumulative impact of the fluctuations . 
• The size of the training set is much larger than the number of updates. Each example 
presented is now different from the previous ones, so that the local fields will have Gaussian 
distributions, leading to closure of the dynamic equations. 
In this paper we study the dynamics of learning in layered networks with restricted training 
sets, where the number p of examples scales linearly with the number N of inputs. Indi­
vidual examples will now re-appear during the learning process as soon as the number of 
weight updates made is of the order of p. Correlations will develop between the weights 
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Figure 1: Student and teacher fields (x, y) (see text) observed during numerical simulations 
of on-line learning (learning rate 11 = 1) in a perceptron of size N = 10, 000 at t = 50, using 
examples from a training set of size p = ~N. Left: Hebbian learning. Right: AdaTron 
learning [5]. Both distributions are clearly non-Gaussian. 

and the training set examples and the student's local fields (activations) will be described by 
non-Gaussian distributions (see e.g. Figure 1). This leads to a breakdown of the standard 
formalism: the field distributions are no longer characterized by a few moments, and the 
macroscopic laws must now be averaged over realizations of the training set. The first rig­
orous study of the dynamics of learning with restricted training sets in non-linear networks, 
via generating functionals [6], was carried out for networks with binary weights. Here we 
use dynamical replica theory (see e.g. [7]) to predict the evolution of macroscopic observ­
abIes for finite a, incorporating the old formalism as a special case (a = p/ N -t 00). For 
simplicity we restrict ourselves to single-layer systems and noise-free teachers. 

2 FROM MICROSCOPIC TO MACROSCOPIC LAWS 

A 'student' perceptron operates a rule which is parametrised by the weight vector J E '!RN: 

s: {-I,I}N -t {-I,l} S(e) = sgn [J . e] == sgn [x] (I) 

It tries to emulate a teacher ~erceptron which operates a similar rule, characterized by a 
(fixed) weight vector B E'!R . The student modifies its weight vector J iteratively, using 
examples of input vectors e which are drawn at random from a fixed (randomly composed) 
training set D = {e1 , . • . , e} c D = {-I, I}N, of size p = aN with a > 0, and the 
corresponding values of the teacher outputs T(e) = sgn[B· e] == sgn [y]. Averages 
over the training set D and over the full set D will be denoted as (<p(e))i> and (<p(e))D, 
respectively. We will analyze the following two classes of learning rules: 

on-line: J(m+I) = J(m) + N e(m) g [J(m)·e(m), B·e(m)] 

batch: J(m+I) = J(m) + N (e g [J(m)·e,B·e])i> 
(2) 

In on-line learning one draws at each step m a question e(m) at random from the training 
set, the dynamics is a stochastic process; in batch learning one iterates a deterministic map. 
Our key dynamical observables are the training- and generalization errors, defined as 

Eg(J) = (O[-(J ·e)(B ·e)]) D (3) 

Only if the training set D is sufficiently large, and if there are no correlations between J and 
the training set examples, will these two errors be identical. We now turn to macroscopic 
observables n[J] = (OdJ], ... , Ok[J]). For N -t 00 (with finite times t = m/ N 
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and with finite k), and if our observables are of a so-called mean-field type, their associated 
macroscopic distribution Pt(!l) is found to obey a Fokker-Planck type equation, with flow­
and diffusion terms that depend on whether on-line or batch learning is used. We now 
choose a specific set of observables !l[J], taylored to the present problem: 

Q[J] = J2, R[J] = J·B, P[x,y;J] = (8[x-J·e] 8[y-B·eDb (4) 

This choice is motivated as follows: (i) in order to incorporate the old formalism we need 
Q[ J] and R[ J], (ii) the training error involves field statistics calculated over the training set, 
as given by P[x, y; J], and (iii) for a < 00 one cannot expect closed equations for a finite 
number of order parameters, the present choice effectively represents an infinite number. 
We will assume the number of arguments (x, y) for which P[x, y; J] is evaluated to go to 
infinity after the limit N ~ 00 has been taken. This eliminates technical subtleties and 
allows us to show that in the Fokker-Planck equation all diffusion terms vanish as N ~ 00. 

The latter thereby reduces to a LiouviIle equation, describing deterministic evolution of our 
macroscopic observables. For on-line learning one arrives at 

:t Q = 27] / dxdy P[x, y] x Q[x; y] + 7]2 / dxdy P[x, y] Q2[X; y] 

:t R = 7] / dxdy P[x, y] y Q[x; y] 

:t P[x, y] = ~ [/ dx' P[x', y]8[x-x' -7]Q[x' , y)) - P[x, yl] 

-7] :x / dx'dy' g(X', y'] A[x, y; x', y'] 

1 2 / I , [' '] 2 [' '] 82 
[ ] + - 7] dx dy P x ,y Q x, y 8 .) P x, Y 

2 x-

(5) 

(6) 

(7) 

Expansion of these equations in powers of 7], and retaining only the terms linear in 7], gives 
the corresponding equations describing batch learning. The complexity of the problem is 
fully concentrated in a Green's function A[x, y; x', y'], which is defined as 

A[x, y; x', y'] = lim ((([1-8cc' 18[x-J·e] 8[y-B·e](6~/) 8[xl-J·(]8[yl-B·e/])b) b)~;t 
N~oo ...... 

It involves a sub-shell average, in which Pt (J) is the weight probability density at time t: 

J dJ K[J] pt(J)8[Q -Q[J]]8[R-R[J]] ITxy 8[P[x, y] -P[x, y; J]] 
(K[J])~:t = J dJ pt(J)8[Q-Q[J]]8[R-R[J]] ITXY 8[P[x, y] - P[x, y; J]] 

where the sub-shells are defined with respect to the order parameters. The solution of 
(5,6,7) can be used to generate the errors of (3): 

Et = / dxdy P[x,y]O[-xy] 
1 

Eg = - arccos[R/ JQ] 
7r 

(8) 

3 CLOSURE VIA DYNAMICAL REPLICA THEORY 

So far our analysis is still exact. We now close the macroscopic laws (5,6,7) by making, for 
N ~ 00, the two key assumptions underlying dynamical replica theory [7]: 

(i) Our macroscopic observables {Q, R, P} obey closed dynamic equations. 
(ii) These equations are self-averaging with respect to the realisation of jj. 

(i) implies that probability variations within the {Q, R, P} subshells are either absent or 
irrelevant to the evolution of {Q, R, P} . We may thus make the simplest choice for Pt (J): 

Pt(J) ~ p(J) '" 8[Q- Q[J]] 8[R-R[J)) IT 8[P[x, y] -P[x, y; J)) (9) 
xy 
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p(J) depends on time implicitly, via the order parameters {Q, R, Pl. The procedure (9) 
leads to exact laws if our observables {Q, R , P} indeed obey closed equations for N --7 00. 

It gives an approximation if they don't. (ii) allows us to average the macroscopic laws over 
all training sets; it is observed in numerical simulations. and can probably be proven using 
the formalism of [6]. Our assumptions result in the closure of (5,6,7), since now A[ . .. ] is 
expressed fully in terms of {Q, R, P} . The final ingredient of dynamical replica theory is 
the realization that averaging fractions is simplified with the replica identity [8] 

/ JdJ W[J,Z]G[J,Z]) = lim jdJ1 .. . dJn (G[J 1 ,z] IT W[Ja,z])z 
\ J dJ W[J , z] Z n-40 a=l 

What remains is to perform integrations. One finds that P[x, y] = P[xly]P[y] with Ply] = 
(271")-~ e- h 2

• Upon introducing the short-hands Dy = (271")- ~ e- h 2 dy and (J(x, y)) = 
J Dydx P[xly]f(x, y) we can write the resulting macroscopic laws as follows : 

d 2 d 
dt Q = 2r/V + TJ Z dt R = TJW (10) 

8 1 j 1 82 
8tP[xly] =~ dx'P[x'ly] {8[x-X'-TJG[x',yll-8[x-x']} + "2TJ2 Z 8x2P[Xly] 

8 
-TJ 8x {P[xly] [U(x-Ry)+Wy+[V-RW-(Q-R2)U]~[x,yJ]} (11) 

with 

U = (<I> [x, y]Q[x , y]), V = (x9[x,y]), W = (y9[x,y]), Z = (92[X,y]) 

As before the batch equations follow upon expanding in TJ and retaining only the linear 
terms. Finding the function <I> [x, y] (in replica symmetric ansatz) requires solving a saddle­
point problem for a scalar observable q and a function M[xIY]. Upon introducing 

B = JqQ-R2 (J[x,y,z])* = Jdx M[xly]eBXZf[x,y,z] 
Q(l- q) J dx M[xly]eBxz 

(with J dx M[xly] = 1 for all y) the saddle-point equations acquire the form 

for all X , y : P[Xly] = j Dz (<5[X -x])* 

((X-Ry)2) + (qQ-R2)[1-~] = [Q(1+q)-2R2](x~[x,y]) 
a 

The solution M[xly] of the functional saddle-point equation, given a value for q in the 
physical range q E [R2/Q, 1], is unique [9] . The function ~[x, y] is then given by 

<I> [X, y] = { JqQ- R2 P[Xly]} -1 j Dz z(<5[X -x])* (12) 

4 THE LIMIT a -7 00 

For consistency we show that our theory reduces to the simple (Q, R) formalism of infinite 
training sets in the limit a --7 00 . Upon making the ansatz 

P[xly] = [271"(Q-R2)]-t e-~[x-RyJ 2 /(Q-R2) 

one finds that the saddle-point equations are simultaneously and uniquely solved by 

M[xly] = P[xly], q = R2/Q 
and <I>[x,y] reduces to 

<I>[x,y] = (x-Ry)/(Q-R2) 
Insertion of our ansatz into equation (II), followed by rearranging of terms and usage of the 
above expression for <I> [x, y], shows that this equation is satisfied. Thus from our general 
theory we indeed recover for a --7 00 the standard theory for infinite training sets. 
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Figure 2: Simulation results for on-line Hebbian learning (system size N = 10.000) ver­
sus an approximate solution of the equations generated by dynamical replica theory (see 
main text), for a E {0.25 , 0.5,1.0, 2.0, 4.0}. Upper five curves: Eg as functions of time. 
Lower five curves: E t as functions of time. Circles: simulation results for Eg; diamonds: 
simulation results for Et . Solid lines : the corresponding theoretical predictions. 

5 BENCHMARK TESTS: HEBBIAN LEARNING 

Batch Hebbian Learning 

For the Hebbian rule, where 9[x, yJ = sgn(y), one can calculate our order parameters 
exactly at any time, even for a < 00 [10], which provides an excellent benchmark for 
general theories such as ours. For batch execution all integrations in our present theory can 
be done and all equations solved explicitly, and our theory is found to predict the following : 

f2 f2 22[2 1] R = RO+rJty;: Q = Qo+2rJtRoy ;:+rJ t ;+; 
e- ~[x-Ry- ( 1)1 /0) sgn(y)f /(Q_R2) 

P[xly] = J27r(Q-R2) (14) 

Eg = ~ arccos [ ~] E = ~ - ~ JDY erf [ lyIR+7]t/a 1 (15) 
" VIq! t 2 2 J2(Q-R2) 

Comparison with the exact solution, calculated along the lines of [10] (where this was done 
for on-line Hebbian learning) shows that the above expressions are all rigorously exact. 

On-Line Hebbian Learning 
For on-line execution we cannot (yet) solve the functional saddle-point equation analyti­
cally. However, some explicit analytical predictions can still be extracted [9] : 

R = Ro + 7]t/f Q = Qo + 27]tRo /f + 7] 2 t + 7] 2t 2 [~+ ~] (16) 

J dx xP[xly] = Ry + (7]t/a) sgn(y) (17) 

1 

P(xIY] '" [ a ] 2' [_ a(x-RY-(7]t/a) sgn(y))2] (t ---* (0) (18) 
27r7]2 t 2 exp 27]2 t2 
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Figure 3: Simulation results for on-line Hebbian learning (N = 10,000) versus dynamical 
replica theory, for a E {2.0, 1.0, 0.5}. Dots: local fields (x, y) = (J·e, B ·e) (calculated for 
examples in the training set), at time t = 50. Dashed lines: conditional average of student 
field x as a function ofy, as predicted by the theory, x(y) = Ry + (."t/a) sgn(y). 
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Figure 4: Simulations of Hebbian on-line learning with N = 10,000. Histograms: student 
field distributions measured at t = 10 and t = 20. Lines: theoretical predictions for student 
field distributions (using the approximate solution of the diffusion equation, see main text), 
for a=4 (left), a= 1 (middle), a=0.25 (right). 

Comparison with the exact result of [ 10] shows that the above expressions (16,17,18), and 
therefore also that of Eg at any time, are all rigorously exact. 

At intermediate times it turns out that a good approximation ofthe solution of our dynamic 
equations for on-line Hebbian learning (exact for t « a and for t -+ 00) is given by 

e- Hz:-RY-('1t / a ) sgn(y))2/(Q-R2+'12t / a ) 
P[xly] = (19) 

J27r(Q - R2 + .,,2t/a) 

Eg = ~ arccos [ . ~] Et = ~ - ~ !DY erf [ lyIR+."t/a 1 (20) 
" V~ 2 2 J2(Q-R2_.,,2t/a) 

In Figure 2 we compare the approximate predictions (20) with the results obtained from 
numerical simulations (N = 10,000, Qo = 1, Ro = 0, ." = 1). All curves show excellent 
agreement between theory and experiment. We also compare the theoretical predictions for 
the distribution P[xly] with the results of numerical simulations. This is done in Figure 3 
where we show the fields as observed at t = 50 in simulations (same parameters as in 
Figure 2) of on-line Hebbian learning, for three different values of a. In the same figure 
we draw (dashed lines) the theoretical prediction for the y-dependent average (17) of the 
conditional x-distribution P[xly]. Finally we compare the student field distribution P[x] = 
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J Dy P[xly] according to (19) with that observed in numerical simulations, see Figure 4. 
The agreement is again excellent (note: here the learning process has almost equilibrated). 

6 DISCUSSION 

In this paper we have shown how the formalism of dynamical replica theory [7] can be used 
successfully to build a general theory with which to predict the evolution of the relevant 
macroscopic performance measures, including the training- and generalisation errors, for 
supervised (on-line and batch) learning in layered neural networks with randomly com­
posed but restricted training sets (i.e. for finite a = piN). Here the student fields are 
no longer described by Gaussian distributions, and the more familiar statistical mechanical 
formalism breaks down. For simplicity and transparency we have restricted ourselves to 
single-layer systems and realizable tasks. In our approach the joint distribution P[x, y] for 
student and teacher fields is itself taken to be a dynamical order parameter, in addition to 
the conventional observables Q and R. From the order parameter set {Q, R, P}, in turn, 
we derive both the generalization error Eg and the training error E t . Following the pre­
scriptions of dynamical replica theory one finds a diffusion equation for P[x, y], which we 
have evaluated by making the replica-symmetric ansatz in the saddle-point equations. This 
equation has Gaussian solutions only for a -+ 00; in the latter case we indeed recover 
correctly from our theory the more familiar formalism of infinite training sets, with closed 
equations for Q and R only. For finite a our theory is by construction exact if for N -+ 00 

the dynamical order parameters {Q, R, P} obey closed, deterministic equations, which are 
self-averaging (i.e. independent of the microscopic realization of the training set). If this is 
not the case, our theory is an approximation. 

We have worked out our general equations explicitly for the special case of Hebbian learn­
ing, where the existence of an exact solution [10], derived from the microscopic equations 
(for finite a), allows us to perform a critical test of our theory. Our theory is found to be 
fully exact for batch Hebbian learning. For on-line Hebbian learning full exactness is diffi­
cult to determine, but exactness can be establised at least for (i) t -+ 00, (ii) the predictions 
for Q, R, Eg and x(y) = J dx xP[xly] at any time. A simple approximate solution of our 
equations already shows excellent agreement between theory and experiment. The present 
study clearly represents only a first step, and many extensions, applications and generaliza­
tions are currently under way. More specifically, we study alternative learning rules as well 
as the extension of this work to the case of noisy data and of soft committee machines. 
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